13 research outputs found
Transcriptome Analysis Reveals Key Genes Involved in Weevil Resistance in the Hexaploid Sweetpotato
Because weevils are the most damaging pests of sweetpotato, the development of cultivars resistant to weevil species is considered the most important aspect in sweetpotato breeding. However, the genes and the underlying molecular mechanisms related to weevil resistance are yet to be elucidated. In this study, we performed an RNA sequencing-based transcriptome analysis using the resistant Kyushu No. 166 (K166) and susceptible Tamayutaka cultivars. The weevil resistance test showed a significant difference between the two cultivars at 30 days after the inoculation, specifically in the weevil growth stage and the suppressed weevil pupation that was only observed in K166. Differential expression and gene ontology analyses revealed that the genes upregulated after inoculation in K166 were related to phosphorylation, metabolic, and cellular processes. Because the weevil resistance was considered to be related to the suppression of larval pupation, we investigated the juvenile hormone (JH)-related genes involved in the inhibition of insect metamorphosis. We found that the expression of some terpenoid-related genes, which are classified as plant-derived JHs, was significantly increased in K166. This is the first study involving a comprehensive gene expression analysis that provides new insights about the genes and mechanisms associated with weevil resistance in sweetpotato
Early gastric cancer detection in high-risk patients: a multicentre randomised controlled trial on the effect of second-generation narrow band imaging
Objective: Early detection of gastric cancer has been the topic of major efforts in high prevalence areas. Whether advanced imaging methods, such as second-generation narrow band imaging (2G-NBI) can improve early detection, is unknown. Design: This open-label, randomised, controlled tandem trial was conducted in 13 hospitals. Patients at increased risk for gastric cancer were randomly assigned to primary white light imaging (WLI) followed by secondary 2G-NBI (WLI group: n=2258) and primary 2G-NBI followed by secondary WLI (2G-NBI group: n=2265) performed by the same examiner. Suspected early gastric cancer (EGC) lesions in both groups were biopsied. Primary endpoint was the rate of EGC patients in the primary examination. The main secondary endpoint was the positive predictive value (PPV) for EGC in suspicious lesions detected (primary examination). Results: The overall sensitivity of primary endoscopy for the detection of EGC in high-risk patients was only 75% and should be improved. 2G-NBI did not increase EGC detection rate over conventional WLI. The impact of a slightly better PPV of 2G-NBI has to be evaluated further. Trial registration number: UMIN000014503
Assessment of Outcomes From 1-Year Surveillance After Detection of Early Gastric Cancer Among Patients at High Risk in Japan
[Importance] Single endoscopic examination often misses early gastric cancer (GC), even when both high-definition white light imaging and narrow-band imaging are used. It is unknown whether new GC can be detected approximately 1 year after intensive index endoscopic examination. [Objective] To examine whether new GC can be detected approximately 1 year after intensive index endoscopic examination using both white light and narrow-band imaging. [Design, Setting, and Participants] This case-control study was a preplanned secondary analysis of a randomized clinical trial involving 4523 patients with a high risk of GC who were enrolled between October 1, 2014, and September 22, 2017. Data were analyzed from December 26, 2019, to April 21, 2021. Participants in the clinical trial received index endoscopy to detect early GC via 2 examinations of the entire stomach using white light and narrow-band imaging. The duration of follow-up was 15 months. The secondary analysis included 107 patients with newly detected GC (case group) and 107 matched patients without newly detected GC (control group) within 15 months after index endoscopy. [Interventions] Surveillance endoscopy was scheduled between 9 and 15 months after index endoscopy. If new lesions suspected of being early GC were detected during surveillance endoscopy, biopsies were obtained to confirm the presence of cancer. [Main Outcomes and Measures] The primary end point was the rate of new GC detected within 15 months after index endoscopy. The main secondary end point was identification of risk factors associated with new GC detected within 15 months after index endoscopy. [Results] Among 4523 patients (mean [SD] age, 70.6 [7.5] years; 3527 men [78.0%]; all of Japanese ethnicity) enrolled in the clinical trial, 4472 received index endoscopy; the rate of early GC detected on index endoscopy was 3.0% (133 patients). Surveillance endoscopy was performed in 4146 of 4472 patients (92.7%) who received an index endoscopy; the rate of new GC detected within 15 months after index endoscopy was 2.6% (107 patients). Among 133 patients for whom early GC was detected during index endoscopy, 110 patients (82.7%) received surveillance endoscopy within 15 months after index endoscopy; the rate of newly detected GC was 10.9% (12 patients). For the secondary analysis of risk factors associated with newly detected GC, characteristics were well balanced between the 107 patients included in the case group vs the 107 patients included in the matched control group (mean [SD] age, 71.7 [7.2] years vs 71.8 [7.0] years; 94 men [87.9%] in each group; 82 patients [76.6%] vs 87 patients [81.3%] with a history of gastric neoplasm). Multivariate analysis revealed that the presence of open-type atrophic gastritis (odds ratio, 6.00; 95% CI, 2.25-16.01; P < .001) and early GC detection by index endoscopy (odds ratio, 4.67; 95% CI, 1.08-20.21; P = .04) were independent risk factors associated with new GC detection. [Conclusions and Relevance] In this study, the rate of new GC detected by surveillance endoscopy approximately 1 year after index endoscopy was similar to that of early GC detected by index endoscopy. These findings suggest that 1-year surveillance is warranted for patients at high risk of GC
A Case of Acquired Haemophilia A in a Patient with Chronic Myelomonocytic Leukaemia
A 67-year-old male, with a known diagnosis of myelodysplastic syndromes with multilineage dysplasia (MDS-MLD) was admitted to our hospital with a primary complaint of subcutaneous bleeding in his left thigh. Laboratory data showed anaemia and prolongation of activated partial thromboplastin time (85.8 s, normal range 24–39 s) without thrombocytopenia. Coagulation factor VIII (FVIII) activity was less than 1% (normal range 60–150%), and a FVIII inhibitor was identified and quantified at 166 BU/mL to indicate a diagnosis of acquired haemophilia A (AHA). A recent, but sustained circulating monocytosis (>1 × 109/L) was observed, which combined with elevated numbers of neutrophil and monocytic cells in the marrow, suggested evolution of MDS-MLD to chronic myelomonocytic leukaemia (CMML), coinciding with AHA. Further analysis revealed a karyotype of 46, XY, i(14) (q10), which was the same abnormality previously identified in the patient. To treat bleeding caused by AHA, steroid and activated prothrombin complex concentrate were administered. Azacitidine (AZA) was used to treat CMML. During the clinical course, bleeding partially improved; however, subsequent acute myocardial infarction occurred on day 87. Worsening bone marrow failure was observed 4 months after the original admission, despite administration of AZA therapy, and the patient died due to bleeding from AHA. This case suggests that the evolution of MDS to CMML status can be associated with AHA conferring a bleeding tendency
GSK3 inhibitor enhances gemtuzumab ozogamicin‐induced apoptosis in primary human leukemia cells by overcoming multiple mechanisms of resistance
Abstract In acute myeloid leukemia (AML), the heterogeneity of genetic and epigenetic characteristics makes treatment difficult. The prognosis for AML is therefore poor, and there is an urgent need for new treatments for this condition. Gemtuzumab ozogamicin (GO), the first antibody‐drug conjugate (ADC), targets the CD33 antigen expressed in over 90% of AML cases. GO therefore has the potential to counter the heterogeneity of AML patients. However, a major clinical problem is that drug resistance to GO diminishes its effect over time. Here, we report that the inhibition of glycogen synthase kinase 3 (GSK3) alone overcomes several forms of GO resistance at concentrations without antileukemic effects. The GSK3 inhibitors tested significantly enhanced the cytotoxic effect of GO in AML cell lines. We elucidated four mechanisms of enhancement: (1) increased expression of CD33, the target antigen of GO; (2) activation of a lysosomal function essential for hydrolysis of the GO linker; (3) reduced expression of MDR1 that eliminates calicheamicin, the payload of GO; and (4) reduced expression of the anti‐apoptotic factor Bcl‐2. A similar combination effect was observed against patient‐derived primary AML cells. Combining GO with GSK3 inhibitors may be efficacious in treating heterogeneous AML