4,297 research outputs found

    Detection of an X-Ray Hot Region in the Virgo Cluster of Galaxies with ASCA

    Get PDF
    Based on mapping observations with ASCA, an unusual hot region with a spatial extent of 1 square degree was discovered between M87 and M49 at a center coordinate of R. A. = 12h 27m 36s and Dec. = 9∘18′9^\circ18' (J2000). The X-ray emission from the region has a 2-10 keV flux of 1×10−111 \times 10^{-11} ergs s−1^{-1} cm−2^{-2} and a temperature of kT≳4kT \gtrsim 4 keV, which is significantly higher than that in the surrounding medium of ∼2\sim 2 keV. The internal thermal energy in the hot region is estimated to be VnkT∼1060V n k T \sim 10^{60} ergs with a gas density of ∼10−4\sim 10^{-4} cm−3^{-3}. A power-law spectrum with a photon index 1.7−2.31.7-2.3 is also allowed by the data. The hot region suggests there is an energy input due to a shock which is probably caused by the motion of the gas associated with M49, infalling toward the M87 cluster with a velocity ≳1000\gtrsim 1000 km s−1^{-1}.Comment: 12 pages, 3 figures, accepted to ApJ

    Temperature Variation in the Cluster of Galaxies Abell 115 Studied with ASCA

    Get PDF
    Abell 115 exhibits two distinct peaks in the surface brightness distribution. ASCA observation shows a significant temperature variation in this cluster, confirmed by a hardness ratio analysis and spectral fits. A linking region between main and sub clusters shows a high temperature compared with other regions. Two possibilities are examined as the cause of the temperature variation: cooling flows in the main cluster and a shock heating due to the collision of the subcluster into the main system. Spectral fits with cooling flow models to the main-cluster data show a mass-deposition rate less than 419 solar-mass/yr. Temperatures in the main cluster, the linking region, and the subcluster are estimated by correcting for the effects of X-ray telescope response as 4.9 (+0.7/-0.6), 11 (+12/-4), and 5.2 (+1.4/-1.0) keV, respectively. The high temperature in the linking region implies that Abell 115 is indeed a merger system, with possible contribution from cooling flows on the temperature structure.Comment: 23 pages, including 7 Postscript figures, accepted for publication in Ap

    Formation of magnetic impurities and pair-breaking effect in a superfluid Fermi gas

    Full text link
    We theoretically investigate a possible idea to introduce magnetic impurities to a superfluid Fermi gas. In the presence of population imbalance (N↑>N↓N_\uparrow>N_\downarrow, where NσN_\sigma is the number of Fermi atoms with pseudospin σ=↑,↓\sigma=\uparrow,\downarrow), we show that nonmagnetic potential scatterers embedded in the system are magnetized in the sense that some of excess ↑\uparrow-spin atoms are localized around them. They destroy the superfluid order parameter around them, as in the case of magnetic impurity effect discussed in the superconductivity literature. This pair-breaking effect naturally leads to localized excited states below the superfluid excitation gap. To confirm our idea in a simply manner, we treat an attractive Fermi Hubbard model within the mean-field theory at T=0. We self-consistently determine superfluid properties around a nonmagnetic impurity, such as the superfluid order parameter, local population imbalance, as well as single-particle density of states, in the presence of population imbalance. Since the competition between superconductivity and magnetism is one of the most fundamental problems in condensed matter physics, our results would be useful for the study of this important issue in cold Fermi gases.Comment: 27 pages, 14 figure

    Two Dimensional Electron and Hole Gases at the Surface of Graphite

    Full text link
    We report high-quality two-dimensional (2D) electron and hole gases induced at the surface of graphite by the electric field effect. The 2D carriers reside within a few near-surface atomic layers and exhibit mobilities up to 15,000 and 60,000 cm2/Vs at room and liquid-helium temperatures, respectively. The mobilities imply ballistic transport at micron scale. Pronounced Shubnikov-de Haas oscillations reveal the existence of two types of carries in both 2D electron and hole gases.Comment: related to cond-mat/0410631 where preliminary data for this experimental system were reporte

    The Structure of the X-Ray Emitting Gas in the Hydra-A Cluster of Galaxies

    Get PDF
    The temperature and abundance structure in the intracluster medium (ICM) of the Hydra-A cluster of galaxies is studied with ASCA and ROSAT. The effect of the large extended outskirts in the point-spread function of the X-Ray Telescope on ASCA is included in this analysis. In the X-ray brightness profile, the strong central excess above a single beta-model, identified in the Einstein and ROSAT data, is also found in the harder energy band (>4keV). A simultaneous fit of five annular spectra taken with the GIS instrument shows a radial distribution of the temperature and metal abundance. A significant central enhancement in the abundance distribution is found, while the temperature profile suggests that the ICM is approximately isothermal with the temperature of ~3.5keV. The ROSAT PSPC spectrum in the central 1'.5 region indicates a significantly lower temperature than the GIS result. A joint analysis of the GIS and PSPC data reveals that the spectra can be described by a two temperature model as well as by a cooling flow model. In both cases, the hot phase gas with the temperature of ~3.5keV occupies more than 90% of the total emission measure within 1'.5 from the cluster center. The estimated mass of the cooler (0.5-0.7keV) component is ~2-6 x 10^9 M_solar, which is comparable to the mass of hot halos seen in non-cD ellipticals. The cooling flow model gives the mass deposition rate of 60+-30 M_solar/yr, an order of magnitude lower than the previous estimation.Comment: 27 pages, 14 figures, AAS LATEX macros v4.0, to appear in The Astrophysical Journa

    Superfluid density and condensate fraction in the BCS-BEC crossover regime at finite temperatures

    Full text link
    The superfluid density is a fundamental quantity describing the response to a rotation as well as in two-fluid collisional hydrodynamics. We present extensive calculations of the superfluid density \rho_s in the BCS-BEC crossover regime of a uniform superfluid Fermi gas at finite temperatures. We include strong-coupling or fluctuation effects on these quantities within a Gaussian approximation. We also incorporate the same fluctuation effects into the BCS single-particle excitations described by the superfluid order parameter \Delta and Fermi chemical potential \mu, using the Nozi\`eres and Schmitt-Rink (NSR) approximation. This treatment is shown to be necessary for consistent treatment of \rho_s over the entire BCS-BEC crossover. We also calculate the condensate fraction N_c as a function of the temperature, a quantity which is quite different from the superfluid density \rho_s. We show that the mean-field expression for the condensate fraction N_c is a good approximation even in the strong-coupling BEC regime. Our numerical results show how \rho_s and N_c depend on temperature, from the weak-coupling BCS region to the BEC region of tightly-bound Cooper pair molecules. In a companion paper by the authors (cond-mat/0609187), we derive an equivalent expression for \rho_s from the thermodynamic potential, which exhibits the role of the pairing fluctuations in a more explicit manner.Comment: 32 pages, 12 figure

    Quasi-periodic X-ray Flares from the Protostar YLW15

    Get PDF
    With ASCA, we have detected three X-ray flares from the Class I protostar YLW15. The flares occurred every ~20 hours and showed an exponential decay with time constant 30-60 ks. The X-ray spectra are explained by a thin thermal plasma emission. The plasma temperature shows a fast-rise and slow-decay for each flare with kT_{peak}~4-6 keV. The emission measure of the plasma shows this time profile only for the first flare, and remains almost constant during the second and third flares at the level of the tail of the first flare. The peak flare luminosities L_{X,peak} were ~5-20 * 10^{31} erg s^{-1}, which are among the brightest X-ray luminosities observed to date for Class I protostars. The total energy released in each flare was 3-6*10^{36} ergs. The first flare is well reproduced by the quasi-static cooling model, which is based on solar flares, and it suggests that the plasma cools mainly radiatively, confined by a semi-circular magnetic loop of length ~14 Ro with diameter-to-length ratio \~0.07. The two subsequent flares were consistent with the reheating of the same magnetic structure as of the first flare. The large-scale magnetic structure and the periodicity of the flares imply that the reheating events of the same magnetic loop originate in an interaction between the star and the disk due to the differential rotation.Comment: Accepted by ApJ, 9 pages incl. 4 ps figure

    On the Fulde-Ferrell State in Spatially Isotropic Superconductors

    Full text link
    Effects of superconducting fluctuations on the Fulde-Ferrell (FF) state are discussed in a spatially isotropic three-dimensional superconductor under a magnetic field. For this system, Shimahara recently showed that within the phenomenological Ginzburg-Landau theory, the long-range order of the FF state is suppressed by the phase fluctuation of the superconducting order parameter. [H. Shimahara: J. Phys. Soc. Jpn. {\bf 67} (1998) 1872, Physica B {\bf 259-261} (1999) 492] In this letter, we investigate this instability of the FF state against superconducting fluctuations from the microscopic viewpoint, employing the theory developed by Nozi\'eres and Schmitt-Rink in the BCS-BEC crossover field. Besides the absence of the second-order phase transition associated with the FF state, we show that even if the pairing interaction is weak, the shift of the chemical potential from the Fermi energy due to the fluctuations is crucial near the critical magnetic field of the FF state obtained within the mean-field theory.Comment: 11 pages, 1 figur
    • …
    corecore