52 research outputs found

    Change in Long-Spacing Collagen in Descemet's Membrane of Diabetic Goto-Kakizaki Rats and Its Suppression by Antidiabetic Agents

    Get PDF
    We examined changes in the ultrastructure and localization of major extracellular matrix components, including 5 types of collagen (type I, III, IV, VI, and VIII), laminin, fibronectin, and heparan sulfate proteoglycan in Descemet's membrane of the cornea of diabetic GK rats. In the cornea of diabetic GK rats, more long-spacing collagen fibrils were observed in Descemet's membrane than in the membrane of the nondiabetic Wistar rats. Both GK and Wistar rats showed an age-dependent increase in the density of the long-spacing collagen. Immunoelectron microscopy showed that type VIII collagen was localized in the internodal region of the long-spacing collagen, which was not labelled by any of the other antibodies used. The antidiabetic agents nateglinide and glibenclamide significantly suppressed the formation of the long-spacing collagen in the diabetic rats. Long-spacing collagen would thus be a useful indicator for studying diabetic changes in the cornea and the effect of antidiabetic agents

    Glinide, but Not Sulfonylurea, Can Evoke Insulin Exocytosis by Repetitive Stimulation: Imaging Analysis of Insulin Exocytosis by Secretagogue-Induced Repetitive Stimulations

    Get PDF
    To investigate the different effects between sulfonylurea (SU) and glinide drugs in insulin secretion, pancreatic β-cells were repeatedly stimulated with SU (glimepiride) or glinide (mitiglinide). Total internal reflection fluorescent (TIRF) microscopy revealed that secondary stimulation with glimepiride, but not glucose and mitiglinide, failed to evoke fusions of insulin granules although primary stimulation with glucose, glimepiride, and mitiglinide induced equivalent numbers of exocytotic responses. Glimepiride, but not glucose and mitiglinide, induced abnormally sustained [Ca2+]i elevations and reductions of docked insulin granules on the plasma membrane. Our data suggest that the effect of glinide on insulin secretory mechanisms is similar to that of glucose

    Characterization of α-gustducin

    Get PDF
    Aims/Introduction: Taste receptors, T1rs and T2rs, and the taste‐selective G‐protein, α‐gustducin, are expressed outside the taste‐sensing system, such as enteroendocrine L cells. Here, we examined whether α‐gustducin also affects nutrition sensing and insulin secretion by pancreatic β‐cells. Materials and Methods: The expression of α‐gustducin and taste receptors was evaluated in β‐cell lines, and in rat and mouse islets either by quantitative polymerase chain reaction or fluorescence immunostaining. The effects of α‐gustducin knockdown on insulin secretion and on cyclic adenosine monophosphate and intracellular Ca2+ levels in rat INS‐1 cells were estimated. Sucralose (taste receptor agonist)‐induced insulin secretion was investigated in INS‐1 cells with α‐gustducin suppression and in islets from mouse disease models. Results: The expression of Tas1r3 and α‐gustducin was confirmed in β‐cell lines and pancreatic islets. Basal levels of cyclic adenosine monophosphate, intracellular calcium and insulin secretion were significantly enhanced with α‐gustducin knockdown in INS‐1 cells. The expression of α‐gustducin was decreased in high‐fat diet‐fed mice and in diabetic db/db mice. Sucralose‐induced insulin secretion was not attenuated in INS‐1 cells with α‐gustducin knockdown or in mouse islets with decreased expression of α‐gustducin. Conclusions: α‐Gustducin is involved in the regulation of cyclic adenosine monophosphate, intracellular calcium levels and insulin secretion in pancreatic β‐cells in a manner independent of taste receptor signaling. α‐Gustducin might play a novel role in β‐cell physiology and the development of type 2 diabetes

    Imaging analysis reveals mechanistic differences between first- and second-phase insulin exocytosis

    Get PDF
    The mechanism of glucose-induced biphasic insulin release is unknown. We used total internal reflection fluorescence (TIRF) imaging analysis to reveal the process of first- and second-phase insulin exocytosis in pancreatic β cells. This analysis showed that previously docked insulin granules fused at the site of syntaxin (Synt)1A clusters during the first phase; however, the newcomers fused during the second phase external to the Synt1A clusters. To reveal the function of Synt1A in phasic insulin exocytosis, we generated Synt1A-knockout (Synt1A−/−) mice. Synt1A−/− β cells showed fewer previously docked granules with no fusion during the first phase; second-phase fusion from newcomers was preserved. Rescue experiments restoring Synt1A expression demonstrated restoration of granule docking status and fusion events. Inhibition of other syntaxins, Synt3 and Synt4, did not affect second-phase insulin exocytosis. We conclude that the first phase is Synt1A dependent but the second phase is not. This indicates that the two phases of insulin exocytosis differ spatially and mechanistically

    Deletion of CDKAL1 Affects Mitochondrial ATP Generation and First-Phase Insulin Exocytosis

    Get PDF
    A variant of the CDKAL1 gene was reported to be associated with type 2 diabetes and reduced insulin release in humans; however, the role of CDKAL1 in β cells is largely unknown. Therefore, to determine the role of CDKAL1 in insulin release from β cells, we studied insulin release profiles in CDKAL1 gene knockout (CDKAL1 KO) mice.Total internal reflection fluorescence imaging of CDKAL1 KO β cells showed that the number of fusion events during first-phase insulin release was reduced. However, there was no significant difference in the number of fusion events during second-phase release or high K(+)-induced release between WT and KO cells. CDKAL1 deletion resulted in a delayed and slow increase in cytosolic free Ca(2+) concentration during high glucose stimulation. Patch-clamp experiments revealed that the responsiveness of ATP-sensitive K(+) (K(ATP)) channels to glucose was blunted in KO cells. In addition, glucose-induced ATP generation was impaired. Although CDKAL1 is homologous to cyclin-dependent kinase 5 (CDK5) regulatory subunit-associated protein 1, there was no difference in the kinase activity of CDK5 between WT and CDKAL1 KO islets.We provide the first report describing the function of CDKAL1 in β cells. Our results indicate that CDKAL1 controls first-phase insulin exocytosis in β cells by facilitating ATP generation, K(ATP) channel responsiveness and the subsequent activity of Ca(2+) channels through pathways other than CDK5-mediated regulation

    Insulin Exocytotic Mechanism by Imaging Technique

    No full text
    corecore