445 research outputs found

    Optical conductivity in the CuO double chains of PrBa_2Cu_4O_8: Consequences of charge fluctuation

    Full text link
    We calculate the optical conductivity of the CuO double chains of PrBa2_2Cu4_4O8_8 by the mean-field approximation for the coupled two-chain Hubbard model around quarter filling. We show that the ∼\sim40 meV peak structure, spectral shape, and small Drude weight observed in experiment are reproduced well by the present calculation provided that the stripe-type charge ordering presents. We argue that the observed anomalous optical response may be due to the presence of stripe-type fluctuations of charge carriers in the CuO double chains; the fast time scale of the optical measurement should enable one to detect slowly fluctuating order parameters as virtually a long-range order.Comment: 7 pages, 5 eps figure

    Zigzag Charge Ordering in alpha'-NaV2O5

    Full text link
    23Na NMR spectrum measurements in alpha'-NaV2O5 with a single- crystalline sample are reported. In the charge-ordered phase, the number of inequivalent Na sites observed is more than that expected from the low-temperature structures of space group Fmm2 reported so far. This disagreement indicates that the real structure including both atomic displacement and charge disproportionation is of lower symmetry. It is suggested that zigzag ordering is the most probable. The temperature variation of the NMR spectra near the transition temperature is incompatible with that of second-order transitions. It is thus concluded that the charge ordering transition is first-order.Comment: 4 pages, 5 eps figures, submitted to J. Phys. Soc. Jp

    X-ray anomalous scattering investigations on the charge order in α′\alpha^\prime-NaV2_2O5_5

    Full text link
    Anomalous x-ray diffraction studies show that the charge ordering in α′\alpha^\prime-NaV2_2O5_5 is of zig-zag type in all vanadium ladders. We have found that there are two models of the stacking of layers along \emph{c-}direction, each of them consisting of 2 degenerated patterns, and that the experimental data is well reproduced if the 2 patterns appears simultaneously. We believe that the low temperature structure contains stacking faults separating regions corresponding to the four possible patterns.Comment: Submitted to Phys. Rev. Lett., 4 pages, 4 eps figures inserted in the tex

    Charge Order Driven spin-Peierls Transition in NaV2O5

    Full text link
    We conclude from 23Na and 51V NMR measurements in NaxV2O5(x=0.996) a charge ordering transition starting at T=37 K and preceding the lattice distortion and the formation of a spin gap Delta=106 K at Tc=34.7 K. Above Tc, only a single Na site is observed in agreement with the Pmmn space group of this first 1/4-filled ladder system. Below Tc=34.7 K, this line evolves into eight distinct 23Na quadrupolar split lines, which evidences a lattice distortion with, at least, a doubling of the unit cell in the (a,b) plane. A model for this unique transition implying both charge density wave and spin-Peierls order is discussed.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let

    NaV_2O_5 as an Anisotropic t-J Ladder at Quarter Filling

    Full text link
    Based on recent experimental evidences that the electronic charge degrees of freedom plays an essential role in the spin-Peierls--like phase transition of NaV2_2O5_5, we first make the mapping of low-energy electronic states of the dd−-pp model for NaV2_2O5_5 to the quarter-filled tt−-JJ ladder with anisotropic parameter values between legs and rungs, and then show that this anisotropic tt−-JJ ladder is in the Mott insulating state, of which lowest-energy states can be modeled by the one-dimensional Heisenberg antiferromagnet with the effective exchange interaction JeffJ_{eff} whose value is consistent with experimental estimates. We furthermore examine the coupling between the ladders as the trellis lattice model and show that the nearest-neighbor Coulomb repulsion on the zigzag-chain bonds can lead to the instability in the charge degrees of freedom of the ladders.Comment: 4 pages, 5 gif figures. Fig.3 corrected. Hardcopies of figures (or the entire manuscript) can be obtained by e-mail request to [email protected]

    Interstellar Gas and X-rays toward the Young Supernova Remnant RCW 86; Pursuit of the Origin of the Thermal and Non-Thermal X-ray

    Full text link
    We have analyzed the atomic and molecular gas using the 21 cm HI and 2.6/1.3 mm CO emissions toward the young supernova remnant (SNR) RCW 86 in order to identify the interstellar medium with which the shock waves of the SNR interact. We have found an HI intensity depression in the velocity range between −46-46 and −28-28 km s−1^{-1} toward the SNR, suggesting a cavity in the interstellar medium. The HI cavity coincides with the thermal and non-thermal emitting X-ray shell. The thermal X-rays are coincident with the edge of the HI distribution, which indicates a strong density gradient, while the non-thermal X-rays are found toward the less dense, inner part of the HI cavity. The most significant non-thermal X-rays are seen toward the southwestern part of the shell where the HI gas traces the dense and cold component. We also identified CO clouds which are likely interacting with the SNR shock waves in the same velocity range as the HI, although the CO clouds are distributed only in a limited part of the SNR shell. The most massive cloud is located in the southeastern part of the shell, showing detailed correspondence with the thermal X-rays. These CO clouds show an enhanced CO JJ = 2-1/1-0 intensity ratio, suggesting heating/compression by the shock front. We interpret that the shock-cloud interaction enhances non-thermal X-rays in the southwest and the thermal X-rays are emitted by the shock-heated gas of density 10-100 cm−3^{-3}. Moreover, we can clearly see an HI envelope around the CO cloud, suggesting that the progenitor had a weaker wind than the massive progenitor of the core-collapse SNR RX J1713.7−-3949. It seems likely that the progenitor of RCW 86 was a system consisting of a white dwarf and a low-mass star with low-velocity accretion winds.Comment: 19 pages, 15 figures, 4 tables, accepted for publication in Journal of High Energy Astrophysics (JHEAp

    Magnetic Susceptibility for CaV4O9CaV_4O_9

    Full text link
    We examine experimental magnetic susceptibility χtot(T)\chi^{tot}(T) for CaV4_4O9_9 by fitting with fitting function αχmag(T)+c\alpha \chi^{mag}(T) + c. The function χmag(T)\chi^{mag}(T) is a power series of 1/T and the lowest order term is fixed as C/TC/T, where CC is the Curie constant as determined by the experimental gg-value (g=1.96). Fitting parameters are α\alpha, cc and expansion coefficients except for the first one in χmag(T)\chi^{mag}(T). We determine α\alpha and cc as α≃\alpha \simeq 0.73 and c≃c\simeq 0 for an experimental sample. We interpret α\alpha as the volume fraction of CaV4_4O9_9 in the sample and χmag(T)\chi^{mag}(T) as the susceptibility for the pure CaV4_4O9_9. The result of α≠1\alpha \ne 1 means that the sample includes nonmagnetic components. This interpretation consists with the result of a perturbation theory and a neutron scattering experiment.Comment: 4pages, 4figure
    • …
    corecore