5 research outputs found

    Wound botulism in injectors of drugs: upsurge in cases in England during 2004.

    Get PDF
    Wound infections due to Clostridium botulinum were not recognised in the UK and Republic of Ireland before 2000. C. botulinum produces a potent neurotoxin which can cause paralysis and death. In 2000 and 2001, ten cases were clinically recognised, with a further 23 in 2002, 15 in 2003 and 40 cases in 2004. All cases occurred in heroin injectors. Seventy cases occurred in England; the remainder occurred in Scotland (12 cases), Wales (2 cases) and the Republic of Ireland (4 cases). Overall, 40 (45%) of the 88 cases were laboratory confirmed by the detection of botulinum neurotoxin in serum, or by the isolation of C. botulinum from wounds. Of the 40 cases in 2004, 36 occurred in England, and of the 12 that were laboratory confirmed, 10 were due to type A. There was some geographical clustering of the cases during 2004, with most cases occurring in London and in the Yorkshire and Humberside region of northeast England

    Separate-effect tests on zirconium cladding degradation in air ingress situations

    No full text
    In the event of air ingress during a reactor or spent fuel pond low probability accident, the fuel rods will be exposed to air-containing atmospheres at high temperatures. In comparison with steam, the presence of air is expected to result in a more rapid escalation of the accident. A state-of-the-art review performed before SARNET started showed that the existing data on zirconium alloy oxidation in air were scarce. Moreover, the exact role of zirconium nitride on the cladding degradation process was poorly understood. Regarding the cladding behaviour in air + steam or nitrogen-enriched atmospheres (encountered in oxygen-starved conditions), almost no data were available. New experimental programmes comprising small-scale tests have therefore been launched at FZK, IRSN (MOZART programme in the frame of the International Source Term Program-ISTP) and INR. Zircaloy-4 cladding in PWR (FZK, IRSN) and in CANDU (INR) geometry are investigated. On-line kinetic data are obtained on centimetre size tube segments, by thermogravimetry (FZK, IRSN and INR) or by mass spectrometry (FZK). Plugged tubes 15 cm long (FZK) are also investigated. The samples are air-oxidised either in the "as-received" state, or after pre-oxidation in steam. "Analytical" tests at constant temperature and gas composition provide basic kinetic data, while more prototypical temperature transients and sequential gas compositions are also investigated. The temperature domains extend from 600 °C up to 1500 °C. Systematic post-test metallographic inspections are performed. The paper gives a synthesis of the results obtained, comparing them in terms of kinetics and oxide scale structure and composition. A comparative analysis is performed with results of the QUENCH-10 (Q-10) bundle test, which included an air ingress phase. It is shown how the data contribute to a better understanding of the cladding degradation process, especially regarding the role of nitrogen. For modelling of the oxide scale degradation under air exposure, important features that have to be taken into account are highlighted. © 2008 Elsevier B.V. All rights reserved

    Recent advances in understanding ruthenium behaviour under air-ingress conditions during a PWR severe accident

    No full text
    In a hypothetical severe accident in a Pressurised Water Reactor (PWR), Fission Products (FPs) can be released from the overheated nuclear fuel and partially transported by gases, composed of a mixture of superheated steam and hydrogen, to the reactor containment. Subsequent air ingress into a damaged reactor core may lead to enhanced fuel oxidation, affecting some FP release, especially that of ruthenium. Ruthenium is of particular interest because of its high radiotoxicity and its ability to form very volatile oxides. In the reactor containment, such volatile forms are very hazardous as they are much less efficiently trapped than particulate forms by emergency filtered venting. In the four and a half years of SARNET, collaborative research dedicated to the "ruthenium story" has been performed by several partners. This paper presents the main achievements over the whole project period. Starting from experimental observations showing that fuel could be extensively oxidised by air to, and that a significant fraction of ruthenium inventory can be released, rather satisfactory models have been developed. In addition, the effect of the air interaction with Zircaloy cladding, as well as with UO2 itself, has been studied. Experiments on the complex transformations of ruthenium oxides upon cooling through the reactor circuit have been performed. An unexpectedly large effect of temperature on the decomposition rate of gaseous ruthenium compounds has been found, as well as effects of the nature of circuit internal surfaces and other FP deposits. So it has been highlighted that various forms of ruthenium can reach the containment, but the most probable gaseous species under these conditions is ruthenium tetroxide. Preliminary analysis of ruthenium transport supports these conclusions. Experiments and analysis have also been launched on the radio-chemical reactions undergone by these ruthenium oxides in the reactor containment. Competing effects of gaseous decomposition to solid particles and re-volatilization from these ruthenium deposits have been demonstrated and modelled. The paper concludes by identifying the remaining work needed to achieve full resolution of the ruthenium source term issue. Recommendations are made for future research activities in the follow-up programme SARNET2. © 2009 Elsevier Ltd. All rights reserved
    corecore