11 research outputs found
Mechanistic Studies of Antibiotic Adjuvants Reducing Kidney’s Bacterial Loads upon Systemic Monotherapy
We describe the design and attributes of a linear pentapeptide-like derivative (C14(ω5)OOc10O) screened for its ability to elicit bactericidal competences of plasma constituents against Gram-negative bacteria (GNB). In simpler culture media, the lipopeptide revealed high aptitudes to sensitize resilient GNB to hydrophobic and/or efflux-substrate antibiotics, whereas in their absence, C14(ω5)OOc10O only briefly delayed bacterial proliferation. Instead, at low micromolar concentrations, the lipopeptide has rapidly lowered bacterial proton and ATP levels, although significantly less than upon treatment with its bactericidal analog. Mechanistic studies support a two-step scenario providing a plausible explanation for the lipopeptide’s biological outcomes against GNB: initially, C14(ω5)OOc10O permeabilizes the outer membrane similarly to polymyxin B, albeit in a manner not necessitating as much LPS-binding affinity. Subsequently, C14(ω5)OOc10O would interact with the inner membrane gently yet intensively enough to restrain membrane-protein functions such as drug efflux and/or ATP generation, while averting the harsher inner membrane perturbations that mediate the fatal outcome associated with bactericidal peers. Preliminary in vivo studies where skin wound infections were introduced in mice, revealed a significant efficacy in affecting bacterial viability upon topical treatment with creams containing C14(ω5)OOc10O, whereas synergistic combination therapies were able to secure the pathogen’s eradication. Further, capitalizing on the finding that C14(ω5)OOc10O plasma-potentiating concentrations were attainable in mice blood at sub-maximal tolerated doses, we used a urinary tract infection model to acquire evidence for the lipopeptide’s systemic capacity to reduce the kidney’s bacterial loads. Collectively, the data establish the role of C14(ω5)OOc10O as a compelling antibacterial potentiator and suggest its drug-like potential
Mechanistic Studies of Antibiotic Adjuvants Reducing Kidney’s Bacterial Loads upon Systemic Monotherapy
We describe the design and attributes of a linear pentapeptide-like derivative (C14(ω5)OOc10O) screened for its ability to elicit bactericidal competences of plasma constituents against Gram-negative bacteria (GNB). In simpler culture media, the lipopeptide revealed high aptitudes to sensitize resilient GNB to hydrophobic and/or efflux-substrate antibiotics, whereas in their absence, C14(ω5)OOc10O only briefly delayed bacterial proliferation. Instead, at low micromolar concentrations, the lipopeptide has rapidly lowered bacterial proton and ATP levels, although significantly less than upon treatment with its bactericidal analog. Mechanistic studies support a two-step scenario providing a plausible explanation for the lipopeptide’s biological outcomes against GNB: initially, C14(ω5)OOc10O permeabilizes the outer membrane similarly to polymyxin B, albeit in a manner not necessitating as much LPS-binding affinity. Subsequently, C14(ω5)OOc10O would interact with the inner membrane gently yet intensively enough to restrain membrane-protein functions such as drug efflux and/or ATP generation, while averting the harsher inner membrane perturbations that mediate the fatal outcome associated with bactericidal peers. Preliminary in vivo studies where skin wound infections were introduced in mice, revealed a significant efficacy in affecting bacterial viability upon topical treatment with creams containing C14(ω5)OOc10O, whereas synergistic combination therapies were able to secure the pathogen’s eradication. Further, capitalizing on the finding that C14(ω5)OOc10O plasma-potentiating concentrations were attainable in mice blood at sub-maximal tolerated doses, we used a urinary tract infection model to acquire evidence for the lipopeptide’s systemic capacity to reduce the kidney’s bacterial loads. Collectively, the data establish the role of C14(ω5)OOc10O as a compelling antibacterial potentiator and suggest its drug-like potential
Pulse Oximetry with Two Infrared Wavelengths without Calibration in Extracted Arterial Blood
Oxygen saturation in arterial blood (SaO2) provides information about the performance of the respiratory system. Non-invasive measurement of SaO2 by commercial pulse oximeters (SpO2) make use of photoplethysmographic pulses in the red and infrared regions and utilizes the different spectra of light absorption by oxygenated and de-oxygenated hemoglobin. Because light scattering and optical path-lengths differ between the two wavelengths, commercial pulse oximeters require empirical calibration which is based on SaO2 measurement in extracted arterial blood. They are still prone to error, because the path-lengths difference between the two wavelengths varies among different subjects. We have developed modified pulse oximetry, which makes use of two nearby infrared wavelengths that have relatively similar scattering constants and path-lengths and does not require an invasive calibration step. In measurements performed on adults during breath holding, the two-infrared pulse oximeter and a commercial pulse oximeter showed similar changes in SpO2. The two pulse oximeters showed similar accuracy when compared to SaO2 measurement in extracted arterial blood (the gold standard) performed in intensive care units on newborns and children with an arterial line. Errors in SpO2 because of variability in path-lengths difference between the two wavelengths are expected to be smaller in the two-infrared pulse oximeter
Overestimation of Oxygen Saturation Measured by Pulse Oximetry in Hypoxemia. Part 1: Effect of Optical Pathlengths-Ratio Increase
On average, arterial oxygen saturation measured by pulse oximetry (SpO2) is higher in hypoxemia than the true oxygen saturation measured invasively (SaO2), thereby increasing the risk of occult hypoxemia. In the current article, measurements of SpO2 on 17 cyanotic newborns were performed by means of a Nellcor pulse oximeter (POx), based on light with two wavelengths in the red and infrared regions (660 and 900 nm), and by means of a novel POx, based on two wavelengths in the infrared region (761 and 820 nm). The SpO2 readings from the two POxs showed higher values than the invasive SaO2 readings, and the disparity increased with decreasing SaO2. SpO2 measured using the two infrared wavelengths showed better correlation with SaO2 than SpO2 measured using the red and infrared wavelengths. After appropriate calibration, the standard deviation of the individual SpO2−SaO2 differences for the two-infrared POx was smaller (3.6%) than that for the red and infrared POx (6.5%, p 2 readings in hypoxemia was explained by the increase in hypoxemia of the optical pathlengths-ratio between the two wavelengths. The two-infrared POx can reduce the overestimation of SpO2 measurement in hypoxemia and the consequent risk of occult hypoxemia, owing to its smaller increase in pathlengths-ratio in hypoxemia
Different Domains Control the Localization and Mobility of LIKE HETEROCHROMATIN PROTEIN1 in Arabidopsis Nuclei
Plants possess a single gene for the structurally related HETEROCHROMATIN PROTEIN1 (HP1), termed LIKE-HP1 (LHP1). We investigated the subnuclear localization, binding properties, and dynamics of LHP1 proteins in Arabidopsis thaliana cells. Transient expression assays showed that tomato (Solanum lycopersicum) LHP1 fused to green fluorescent protein (GFP; Sl LHP1-GFP) and Arabidopsis LHP1 (At LHP1-GFP) localized to heterochromatic chromocenters and showed punctuated distribution within the nucleus; tomato but not Arabidopsis LHP1 was also localized within the nucleolus. Mutations of aromatic cage residues that recognize methyl K9 of histone H3 abolished their punctuated distribution and localization to chromocenters. Sl LHP1-GFP plants displayed cell type–dependent subnuclear localization. The diverse localization pattern of tomato LHP1 did not require the chromo shadow domain (CSD), whereas the chromodomain alone was insufficient for localization to chromocenters; a nucleolar localization signal was identified within the hinge region. Fluorescence recovery after photobleaching showed that Sl LHP1 is a highly mobile protein whose localization and retention are controlled by distinct domains; retention at the nucleolus and chromocenters is conferred by the CSD. Our results imply that LHP1 recruitment to chromatin is mediated, at least in part, through interaction with methyl K9 and that LHP1 controls different nuclear processes via transient binding to its nuclear sites
Ibrutinib-associated invasive fungal diseases in patients with chronic lymphocytic leukaemia and non-Hodgkin lymphoma: An observational study
Background Invasive fungal diseases (IFD) are life-threatening infections most commonly diagnosed in acute leukaemia patients with prolonged neutropenia and are uncommonly diagnosed in patients with lymphoproliferative diseases. Objectives Following the initial report of aspergillosis diagnosed shortly after beginning ibrutinib for chronic lymphocytic leukaemia, a survey was developed to seek additional cases of IFD during ibrutinib treatment. Methods Local and international physicians and groups were approached for relevant cases. Patients were included if they met the following criteria: diagnosis of chronic lymphocytic leukaemia/non-Hodgkin lymphoma; proven or probable IFD; and ibrutinib treatment on the date IFD were diagnosed. Clinical and laboratory data were captured using REDCap software. Result Thirty-five patients with IFD were reported from 22 centres in eight countries: 26 (74%) had chronic lymphocytic leukaemia. The median duration of ibrutinib treatment before the onset of IFD was 45 days (range 1-540). Aspergillus species were identified in 22 (63%) of the patients and Cryptococcus species in 9 (26%). Pulmonary involvement occurred in 69% of patients, cranial in 60% and disseminated disease in 60%. A definite diagnosis was made in 21 patients (69%), and the mortality rate was 69%. Data from Israel regarding ibrutinib treated patients were used to evaluate a prevalence of 2.4% IFD. Conclusions The prevalence of IFD among chronic lymphocytic leukaemia/non-Hodgkin lymphoma patients treated with ibrutinib appears to be higher than expected. These patients often present with unusual clinical features. Mortality from IFD in this study was high, indicating that additional studies are urgently needed to identify patients at risk for ibrutinib-associated IFD
Antiplasmodial Properties of Acyl-Lysyl Oligomers in Culture and Animal Models of Malariaâ–¿
Our previous analysis of antiplasmodial properties exhibited by dodecanoyl-based oligo-acyl-lysyls (OAKs) has outlined basic attributes implicated in potent inhibition of parasite growth and underlined the critical role of excess hydrophobicity in hemotoxicity. To dissociate hemolysis from antiplasmodial effect, we screened >50 OAKs for in vitro growth inhibition of Plasmodium falciparum strains, thus revealing the minimal requirements for antiplasmodial potency in terms of sequence and composition, as confirmed by efficacy studies in vivo. The most active sequence, dodecanoyllysyl-bis(aminooctanoyllysyl)-amide (C12K-2α8), inhibited parasite growth at submicromolar concentrations (50% inhibitory concentration [IC50], 0.3 ± 0.1 μM) and was devoid of hemolytic activity (<0.4% hemolysis at 150 μM). Unlike the case of dodecanoyl-based analogs, which equally affect ring and trophozoite stages of the parasite developmental cycle, the ability of various octanoyl-based OAKs to distinctively affect these stages (rings were 4- to 5-fold more sensitive) suggests a distinct antiplasmodial mechanism, nonmembranolytic to host red blood cells (RBCs). Upon intraperitoneal administration to mice, C12K-2α8 demonstrated sustainable high concentrations in blood (e.g., 0.1 mM at 25 mg/kg of body weight). In Plasmodium vinckei-infected mice, C12K-2α8 significantly affected parasite growth (50% effective dose [ED50], 22 mg/kg) but also caused mortality in 2/3 mice at high doses (50 mg/kg/day × 4)