35 research outputs found

    Isolation and Chimerization of a Highly Neutralizing Antibody Conferring Passive Protection against Lethal Bacillus anthracis Infection

    Get PDF
    Several studies have demonstrated that the passive transfer of protective antigen (PA)-neutralizing antibodies can protect animals against Bacillus anthracis infection. The standard protocol for the isolation of PA-neutralizing monoclonal antibodies is based upon a primary selection of the highest PA-binders by ELISA, and usually yields only few candidates antibodies. We demonstrated that by applying a PA-neutralization functionality-based screen as the primary criterion for positive clones, it was possible to isolate more than 100 PA-neutralizing antibodies, some of which exhibited no measurable anti-PA titers in ELISA. Among the large panel of neutralizing antibodies identified, mAb 29 demonstrated the most potent activity, and was therefore chimerized. The variable region genes of the mAb 29 were fused to human constant region genes, to form the chimeric 29 antibody (cAb 29). Guinea pigs were fully protected against infection by 40LD50 B. anthracis spores following two separate administrations with 10 mg/kg of cAb 29: the first administration was given before the challenge, and a second dose was administered on day 4 following exposure. Moreover, animals that survived the challenge and developed endogenous PA-neutralizing antibodies with neutralizing titers above 100 were fully protected against repeat challenges with 40LD50 of B. anthracis spores. The data presented here emphasize the importance of toxin neutralization-based screens for the efficient isolation of protective antibodies that were probably overlooked in the standard screening protocol. The protective activity of the chimeric cAb 29 demonstrated in this study suggest that it may serve as an effective immunotherapeutic agent against anthrax

    Treatments for Pulmonary Ricin Intoxication: Current Aspects and Future Prospects

    No full text
    Ricin, a plant-derived toxin originating from the seeds of Ricinus communis (castor beans), is one of the most lethal toxins known, particularly if inhaled. Ricin is considered a potential biological threat agent due to its high availability and ease of production. The clinical manifestation of pulmonary ricin intoxication in animal models is closely related to acute respiratory distress syndrome (ARDS), which involves pulmonary proinflammatory cytokine upregulation, massive neutrophil infiltration and severe edema. Currently, the only post-exposure measure that is effective against pulmonary ricinosis at clinically relevant time-points following intoxication in pre-clinical studies is passive immunization with anti-ricin neutralizing antibodies. The efficacy of this antitoxin treatment depends on antibody affinity and the time of treatment initiation within a limited therapeutic time window. Small-molecule compounds that interfere directly with the toxin or inhibit its intracellular trafficking may also be beneficial against ricinosis. Another approach relies on the co-administration of antitoxin antibodies with immunomodulatory drugs, thereby neutralizing the toxin while attenuating lung injury. Immunomodulators and other pharmacological-based treatment options should be tailored according to the particular pathogenesis pathways of pulmonary ricinosis. This review focuses on the current treatment options for pulmonary ricin intoxication using anti-ricin antibodies, disease-modifying countermeasures, anti-ricin small molecules and their various combinations

    Bypass of Tumor Drug Resistance by Antivascular Therapy

    No full text
    Multidrug resistance (MDR) presents a major obstacle for the successful chemotherapy of cancer. Its emergence during chemotherapy is attributed to a selective process, which gives a growth advantage to MDR cells within the genetically unstable neoplastic cell population. The pleiotropic nature of clinical MDR poses a great difficulty for the development of treatment strategies that aim at blocking MDR at the tumor cell level. Targeting treatment to the nonmalignant vascular network—the lifeline of the tumor—is a promising alternative for the treatment of drug-resistant tumors. The present study demonstrates thatMDRin cancer can be successfully circumvented by photodynamic therapy (PDT) using an antivascular treatment protocol. We show that, although P-glycoprotein-expressing human HT29/MDR colon carcinoma cells in culture are resistant to PDT with Pd-bacteriopheophorbide (TOOKAD), the same treatment induces tumor necrosis with equal efficacy (88% vs 82%) in HT29/MDR-derived xenografts and their wild type counterparts, respectively. These results are ascribed to the rapid antivascular effects of the treatment, supporting the hypothesis that MDR tumors can be successfully eradicated by indirect approaches that bypass their inherent drug resistance. We suggest that with progress in ongoing clinical trials, TOOKAD-PDT may offer a novel option for local treatment of MDR tumors

    Novel Phage Display-Derived Anti-Abrin Antibodies Confer Post-Exposure Protection against Abrin Intoxication

    No full text
    Abrin toxin is a type 2 ribosome inactivating glycoprotein isolated from the seeds of Abrus precatorius (jequirity pea). Owing to its high toxicity, relative ease of purification and accessibility, it is considered a biological threat agent. To date, there is no effective post-exposure treatment for abrin poisoning and passive immunization remains the most effective therapy. However, the effectiveness of anti-abrin monoclonal antibodies for post-exposure therapy following abrin intoxication has not been demonstrated. The aim of this study was to isolate high affinity anti-abrin antibodies that possess potent toxin-neutralization capabilities. An immune scFv phage-display library was constructed from an abrin-immunized rabbit and a panel of antibodies (six directed against the A subunit of abrin and four against the B subunit) was isolated and expressed as scFv-Fc antibodies. By pair-wise analysis, we found that these antibodies target five distinct epitopes on the surface of abrin and that antibodies against all these sites can bind the toxin simultaneously. Several of these antibodies (namely, RB9, RB10, RB28 and RB30) conferred high protection against pulmonary intoxication of mice, when administered six hours post exposure to a lethal dose of abrin. The data presented in this study demonstrate for the first time the efficacy of monoclonal antibodies in treatment of mice after pulmonary intoxication with abrin and promote the use of these antibodies, one or several, for post-exposure treatment of abrin intoxication

    Diverse Profiles of Ricin-Cell Interactions in the Lung Following Intranasal Exposure to Ricin

    No full text
    Ricin, a plant-derived exotoxin, inhibits protein synthesis by ribosomal inactivation. Due to its wide availability and ease of preparation, ricin is considered a biothreat, foremost by respiratory exposure. We examined the in vivo interactions between ricin and cells of the lungs in mice intranasally exposed to the toxin and revealed multi-phasic cell-type-dependent binding profiles. While macrophages (MΦs) and dendritic cells (DCs) displayed biphasic binding to ricin, monophasic binding patterns were observed for other cell types; epithelial cells displayed early binding, while B cells and endothelial cells bound toxin late after intoxication. Neutrophils, which were massively recruited to the intoxicated lung, were refractive to toxin binding. Although epithelial cells bound ricin as early as MΦs and DCs, their rates of elimination differed considerably; a reduction in epithelial cell counts occurred late after intoxication and was restricted to alveolar type II cells only. The differential binding and cell-elimination patterns observed may stem from dissimilar accessibility of the toxin to different cells in the lung and may also reflect unequal interactions of the toxin with different cell-surface receptors. The multifaceted interactions observed in this study between ricin and the various cells of the target organ should be considered in the future development of efficient post-exposure countermeasures against ricin intoxication
    corecore