28,557 research outputs found

    High efficiency tomographic reconstruction of quantum states by quantum nondemolition measurements

    Full text link
    We propose a high efficiency tomographic scheme to reconstruct an unknown quantum state of the qubits by using a series of quantum nondemolition (QND) measurements. The proposed QND measurements of the qubits are implemented by probing the the stationary transmissions of the dispersively-coupled resonator. It is shown that only one kind of QND measurements is sufficient to determine all the diagonal elements of the density matrix of the detected quantum state. The remaining non-diagonal elements of the density matrix can be determined by other spectral measurements by beforehand transferring them to the diagonal locations using a series of unitary operations. Compared with the pervious tomographic reconstructions based on the usual destructively projective (DP) measurements (wherein one kind of such measurements could only determine one diagonal element of the density matrix), the present approach exhibits significantly high efficiency for N-qubit (N > 1). Specifically, our generic proposal is demonstrated by the experimental circuit-quantumelectrodynamics (circuit-QED) systems with a few Josephson charge qubits.Comment: 9pages,4figure

    Stark-chirped rapid adiabatic passage in the presence of dissipation for quantum computation

    Full text link
    Stark-chirped rapid adiabatic passage (SCRAP) is an important technique used for coherent quantum controls. In this paper we investigate how the practically-existing dissipation of the system influences on the efficiency of the passage, and thus the fidelities of the SCRAP-based quantum gates. With flux-biased Josephson qubits as a specifical example, our results show clearly that the efficiency of the logic gates implemented by SCRAP are robust against the weak dissipation. The influence due to the non-adiabtic transitions between the adiabatic passages is comparatively significantly small. Therefore, the SCRAP-based logic gates should be feasible for the realistic physical systems with noises

    Non Abelian Sugawara Construction and the q-deformed N=2 Superconformal Algebra

    Full text link
    The construction of a q-deformed N=2 superconformal algebra is proposed in terms of level 1 currents of Uq(su^(2)){\cal{U}}_{q} ({\widehat{su}}(2)) quantum affine Lie algebra and a single real Fermi field. In particular, it suggests the expression for the q-deformed Energy-Momentum tensor in the Sugawara form. Its constituents generate two isomorphic quadratic algebraic structures. The generalization to Uq(su^(N+1)){\cal{U}}_{q} ({\widehat{su}}(N+1)) is also proposed.Comment: AMSLATEX, 21page

    Testing tripartite Mermin inequalities by spectral joint-measurements of qubits

    Full text link
    It is well known that Bell inequality supporting the local realism can be violated in quantum mechanics. Numerous tests of such a violation have been demonstrated with bipartite entanglements. Using spectral jointmeasurements of the qubits, we here propose a scheme to test the tripartite Mermin inequality (a three-qubit Bell-type inequality) with three qubits dispersively-coupled to a driven cavity. First, we show how to generate a three-qubit Greenberger-Horne-Zeilinger (GHZ) state by only one-step quantum operation. Then, spectral joint-measurements are introduced to directly confirm such a tripartite entanglement. Assisted by a series of single-qubit operations, these measurements are further utilized to test the Mermin inequality. The feasibility of the proposal is robustly demonstrated by the present numerical experiments.Comment: 7pages,3figure

    J/Psi Propagation in Hadronic Matter

    Full text link
    We study J/ψ\psi propagation in hot hadronic matter using a four-flavor chiral Lagrangian to model the dynamics and using QCD sum rules to model the finite size effects manifested in vertex interactions through form factors. Charmonium breakup due to scattering with light mesons is the primary impediment to continued propagation. Breakup rates introduce nontrivial temperature and momentum dependence into the J/ψ\psi spectral function.Comment: 6 Pages LaTeX, 3 postscript figures. Proceedings for Strangeness in Quark Matter 2003, Atlantic Beach, NC, March 12-17, 2003; minor corrections in version 2, to appear in J. Phys.

    Quantum information processing with a single photon by input-output process regarding low-Q cavities

    Full text link
    Both cavity QED and photons are promising candidates for quantum information processing. We consider a combination of both candidates with a single photon going through spatially separate cavities to entangle the atomic qubits, based on the input-output process of the cavities. We present a general expression for the input-output process regarding the low-Q cavity confining a single atom, which works in a wide range of parameters. Focusing on low-Q cavity case, we propose some schemes for quantum information processing with Faraday rotation using single photons, which is much different from the high-Q cavity and strong coupling cases.Comment: 7 pages, 3 figures. Accepted by PR

    Analysis of Bidirectional Associative Memory using SCSNA and Statistical Neurodynamics

    Full text link
    Bidirectional associative memory (BAM) is a kind of an artificial neural network used to memorize and retrieve heterogeneous pattern pairs. Many efforts have been made to improve BAM from the the viewpoint of computer application, and few theoretical studies have been done. We investigated the theoretical characteristics of BAM using a framework of statistical-mechanical analysis. To investigate the equilibrium state of BAM, we applied self-consistent signal to noise analysis (SCSNA) and obtained a macroscopic parameter equations and relative capacity. Moreover, to investigate not only the equilibrium state but also the retrieval process of reaching the equilibrium state, we applied statistical neurodynamics to the update rule of BAM and obtained evolution equations for the macroscopic parameters. These evolution equations are consistent with the results of SCSNA in the equilibrium state.Comment: 13 pages, 4 figure
    corecore