34,428 research outputs found
Stability and asymptotic behavior of periodic traveling wave solutions of viscous conservation laws in several dimensions
Under natural spectral stability assumptions motivated by previous
investigations of the associated spectral stability problem, we determine sharp
estimates on the linearized solution operator about a multidimensional
planar periodic wave of a system of conservation laws with viscosity, yielding
linearized stability for all and dimensions and nonlinear stability and
-asymptotic behavior for and . The behavior can in
general be rather complicated, involving both convective (i.e., wave-like) and
diffusive effects
Current and noise expressions for radio-frequency single-electron transistors
We derive self-consistent expressions of current and noise for
single-electron transistors driven by time-dependent perturbations. We take
into account effects of the electrical environment, higher-order co-tunneling,
and time-dependent perturbations under the two-charged state approximation
using the Schwinger-Kedysh approach combined with the generating functional
technique. For a given generating functional, we derive exact expressions for
tunneling currents and noises and present the forms in terms of transport
coefficients. It is also shown that in the adiabatic limit our results
encompass previous formulas. In order to reveal effects missing in static
cases, we apply the derived results to simulate realized radio-frequency
single-electron transistor. It is found that photon-assisted tunneling affects
largely the performance of the single-electron transistor by enhancing both
responses to gate charges and current noises. On various tunneling resistances
and frequencies of microwaves, the dependence of the charge sensitivity is also
discussed.Comment: 18 pages, 9 figure
High efficiency tomographic reconstruction of quantum states by quantum nondemolition measurements
We propose a high efficiency tomographic scheme to reconstruct an unknown
quantum state of the qubits by using a series of quantum nondemolition (QND)
measurements. The proposed QND measurements of the qubits are implemented by
probing the the stationary transmissions of the dispersively-coupled resonator.
It is shown that only one kind of QND measurements is sufficient to determine
all the diagonal elements of the density matrix of the detected quantum state.
The remaining non-diagonal elements of the density matrix can be determined by
other spectral measurements by beforehand transferring them to the diagonal
locations using a series of unitary operations. Compared with the pervious
tomographic reconstructions based on the usual destructively projective (DP)
measurements (wherein one kind of such measurements could only determine one
diagonal element of the density matrix), the present approach exhibits
significantly high efficiency for N-qubit (N > 1). Specifically, our generic
proposal is demonstrated by the experimental circuit-quantumelectrodynamics
(circuit-QED) systems with a few Josephson charge qubits.Comment: 9pages,4figure
Realizations of the -Heisenberg and -Virasoro Algebras
We give field theoretic realizations of both the -Heisenberg and the
-Virasoro algebra. In particular, we obtain the operator product expansions
among the current and the energy momentum tensor obtained using the Sugawara
construction.Comment: 9 page
Controlling the Spin Polarization of the Electron Current in a Semimagnetic Resonant-Tunneling Diode
The spin filtering effect of the electron current in a double-barrier
resonant-tunneling diode (RTD) consisting of ZnMnSe semimagnetic layers has
been studied theoretically. The influence of the distribution of the magnesium
ions on the coefficient of the spin polarization of the electron current has
been investigated. The dependence of the spin filtering degree of the electron
current on the external magnetic field and the bias voltage has been obtained.
The effect of the total spin polarization of the electron current has been
predicted. This effect is characterized by total suppression of the spin-up
component of electron current, that takes place when the Fermi level coincides
with the lowest Landau level for spin-up electrons in the RTD semimagnetic
emitter
Fidelity of Quantum Teleportation through Noisy Channels
We investigate quantum teleportation through noisy quantum channels by
solving analytically and numerically a master equation in the Lindblad form. We
calculate the fidelity as a function of decoherence rates and angles of a state
to be teleported. It is found that the average fidelity and the range of states
to be accurately teleported depend on types of noise acting on quantum
channels. If the quantum channels is subject to isotropic noise, the average
fidelity decays to 1/2, which is smaller than the best possible value 2/3
obtained only by the classical communication. On the other hand, if the noisy
quantum channel is modeled by a single Lindblad operator, the average fidelity
is always greater than 2/3.Comment: 6 pages, 5 figures, accepted for publication in Phys. Rev.
Kinematic approach to the mixed state geometric phase in nonunitary evolution
A kinematic approach to the geometric phase for mixed quantal states in
nonunitary evolution is proposed. This phase is manifestly gauge invariant and
can be experimentally tested in interferometry. It leads to well-known results
when the evolution is unitary.Comment: Minor changes; journal reference adde
- …