1,716 research outputs found

    Gate-voltage dependence of Kondo effect in a triangular quantum dot

    Full text link
    We study the conductance through a triangular triple quantum dot, which are connected to two noninteracting leads, using the numerical renormalization group (NRG). It is found that the system shows a variety of Kondo effects depending on the filling of the triangle. The SU(4) Kondo effect occurs at half-filling, and a sharp conductance dip due to a phase lapse appears in the gate-voltage dependence. Furthermore, when four electrons occupy the three sites on average, a local S=1 moment, which is caused by the Nagaoka mechanism, is induced along the triangle. The temperature dependence of the entropy and spin susceptibility of the triangle shows that this moment is screened by the conduction electrons via two separate stages at different temperatures. The two-terminal and four-terminal conductances show a clear difference at the gate voltages, where the SU(4) or the S=1 Kondo effects occurring.Comment: 4 pages, 4 figs: typos just below (4) are corrected, results are not affecte

    Perturbation Study of the Conductance through an Interacting Region Connected to Multi-Mode Leads

    Full text link
    We study the effects of electron correlation on transport through an interacting region connected to multi-mode leads based on the perturbation expansion with respect to the inter-electron interaction. At zero temperature the conductance defined in the Kubo formalism can be written in terms of a single-particle Green's function at the Fermi energy, and it can be mapped onto a transmission coefficient of the free quasiparticles described by an effective Hamiltonian. We apply this formulation to a two-dimensional Hubbard model of finite size connected to two noninteracting leads. We calculate the conductance in the electron-hole symmetric case using the order U2U^2 self-energy. The conductance shows several maximums in the UU dependence in some parameter regions of ty/txt_y/t_x, where txt_x (tyt_y) is the hopping matrix element in the xx- (yy-) directions. This is caused by the resonance occurring in some of the subbands, and is related with the UU dependence of the eigenvalues of the effective Hamiltonian.Comment: 17 pages, 12 figures, to be published in J.Phys.Soc.Jpn. 71(2002)No.

    Determination of the phase shifts for interacting electrons connected to reservoirs

    Full text link
    We describe a formulation to deduce the phase shifts, which determine the ground-state properties of interacting quantum-dot systems with the inversion symmetry, from the fixed-point eigenvalues of the numerical renormalization group (NRG). Our approach does not assume the specific form of the Hamiltonian nor the electron-hole symmetry, and it is applicable to a wide class of quantum impurities connected to noninteracting leads. We apply the method to a triple dot which is described by a three-site Hubbard chain connected to two noninteracting leads, and calculate the dc conductance away from half-filling. The conductance shows the typical Kondo plateaus of Unitary limit in some regions of the gate voltages, at which the total number of electrons N_el in the three dots is odd, i.e., N_el =1, 3 and 5. In contrast, the conductance shows a wide minimum in the gate voltages corresponding to even number of electrons, N_el = 2 and 4. We also discuss the parallel conductance of the triple dot connected transversely to four leads, and show that it can be deduced from the two phase shifts defined in the two-lead case.Comment: 9 pages, 12 figures: Fig. 12 has been added to discuss T_

    A mobile antineutrino detector with plastic scintillators

    Full text link
    We propose a new type segmented antineutrino detector made of plastic scintillators for the nuclear safeguard application. A small prototype was built and tested to measure background events. A satisfactory unmanned field operation of the detector system was demonstrated. Besides, a detailed Monte Carlo simulation code was developed to estimate the antineutrino detection efficiency of the detector.Comment: 23 pages, 11 figures; accepted for publication in Nuclear Instruments and Methods in Physics Research

    Fermi liquid theory for the Anderson model out of equilibrium

    Full text link
    We study low-energy properties of the Anderson impurity under a finite bias voltage VV using the perturbation theory in UU of Yamada and Yosida in the nonequilibrium Keldysh diagrammatic formalism, and obtain the Ward identities for the derivative of the self-energy with respect to VV. The self-energy is calculated exactly up to terms of order ω2\omega^2, T2T^2 and V2V^2, and the coefficients are defined with respect to the equilibrium ground state. From these results, the nonlinear response of the current through the impurity has been deduced up to order V3V^3.Comment: 8 pages, 1 figur

    Pulse-Shape Discrimination of CaF2(Eu)

    Full text link
    We measured the decay time of the scintillation pulses produced by electron and nuclear recoils in CaF2(Eu) by a new fitting method. In the recoil energy region 5-30 keVee, we found differences of the decay time between electron and nuclear recoil events. In the recoil energy region above 20 keVee, we found that the decay time is independent of the recoil energy.Comment: 10 pages, 4 figure

    NRG approach to the transport through a finite Hubbard chain connected to reservoirs

    Full text link
    We study the low-energy properties of a Hubbard chain of finite size N_C connected to two noninteracting leads using the numerical renormalization group (NRG) method. The results obtained for N_C = 3 and 4 show that the low-lying eigenstates have one-to-one correspondence with the free quasi-particle excitations of a local Fermi liquid. It enables us to determine the transport coefficients from the fixed-point Hamiltonian. At half-filling, the conductance for even N_C decreases exponentially with increasing U showing a tendency towards the development of a Mott-Hubbard gap. In contrast, for odd N_C, the Fermi-liquid nature of the low-energy states assures perfect transmission through the Kondo resonance. Our formulation to deduce the conductance from the fixed-point energy levels can be applied to various types of interacting systems.Comment: One typo found in Eq.(3) in previous version has been correcte
    corecore