113 research outputs found
Cyclic Nucleotide-Gated Channels Contribute to Thromboxane A2-Induced Contraction of Rat Small Mesenteric Arteries
Background: Thromboxane A 2 (TxA 2)-induced smooth muscle contraction has been implicated in cardiovascular, renal and respiratory diseases. This contraction can be partly attributed to TxA2-induced Ca 2+ influx, which resulted in vascular contraction via Ca 2+-calmodulin-MLCK pathway. This study aims to identify the channels that mediate TxA2-induced Ca 2+ influx in vascular smooth muscle cells. Methodology/Principal Findings: Application of U-46619, a thromboxane A2 mimic, resulted in a constriction in endothelium-denuded small mesenteric artery segments. The constriction relies on the presence of extracellular Ca 2+, because removal of extracellular Ca 2+ abolished the constriction. This constriction was partially inhibited by an L-type Ca 2+ channel inhibitor nifedipine (0.5–1 mM). The remaining component was inhibited by L-cis-diltiazem, a selective inhibitor for CNG channels, in a dose-dependent manner. Another CNG channel blocker LY83583 [6-(phenylamino)-5,8-quinolinedione] had similar effect. In the primary cultured smooth muscle cells derived from rat aorta, application of U46619 (100 nM) induced a rise in cytosolic Ca 2+ ([Ca 2+]i), which was inhibited by L-cis-diltiazem. Immunoblot experiments confirmed the presence of CNGA2 protein in vascular smooth muscle cells. Conclusions/Significance: These data suggest a functional role of CNG channels in U-46619-induced Ca 2+ influx and contraction of smooth muscle cells
Variations in white blood count, thromboxane B2 levels and hematocrit in chronic venous hypertension
A sex‐specific, COX‐derived/thromboxane receptor activator causes depolarization and vasoconstriction in male mice mesenteric resistance arteries
Effects of U-46619 on Pulmonary Hemodynamics before and after Administration of Bm-573, a Novel Thromboxane A2 Inhibitor
We studied the effects on pulmonary hemodynamics of U-46619, a thromboxane A2 (TXA2) agonist, before and after administration of a novel TXA2 receptor antagonist and synthase inhibitor (BM-573). Six anesthetized pigs (Ago group) received 6 consecutive injections of U-46619 at 30-min interval and were compared with six anesthetized pigs (Anta group) which received an increasing dosage regimen of BM-573 10 min before each U-46619 injection. Consecutive changes in pulmonary hemodynamics, including characteristic resistance, vascular compliance, and peripheral vascular resistance, were continuously assessed during the experimental protocol using a four-element Windkessel model. At 2 mg/kg, BM-573 completely blocked pulmonary hypertensive effects of U-46619 but pulmonary vascular compliance still decreased. This residual effect can probably be explained by a persistent increase in the tonus of the pulmonary vascular wall smooth muscles sufficient to decrease vascular compliance but not vessel lumen diameter. Such molecule could be a promising therapeutic approach in TXA2 mediated pulmonary hypertension as it is the case in pulmonary embolism, hyperacute lung rejection and endotoxinic shock
Liver Kinase B1 Is Required for Thromboxane Receptor-Dependent Nuclear Factor-κB Activation and Inflammatory Responses
Mediation of reocclusion by thromboxane A2 and serotonin after thrombolysis with tissue-type plasminogen activator in a canine preparation of coronary thrombosis.
Inhibition of cyclic flow variations in stenosed canine coronary arteries by thromboxane A2/prostaglandin H2 receptor antagonists.
- …
