113 research outputs found
Cyclic Nucleotide-Gated Channels Contribute to Thromboxane A2-Induced Contraction of Rat Small Mesenteric Arteries
Background: Thromboxane A 2 (TxA 2)-induced smooth muscle contraction has been implicated in cardiovascular, renal and respiratory diseases. This contraction can be partly attributed to TxA2-induced Ca 2+ influx, which resulted in vascular contraction via Ca 2+-calmodulin-MLCK pathway. This study aims to identify the channels that mediate TxA2-induced Ca 2+ influx in vascular smooth muscle cells. Methodology/Principal Findings: Application of U-46619, a thromboxane A2 mimic, resulted in a constriction in endothelium-denuded small mesenteric artery segments. The constriction relies on the presence of extracellular Ca 2+, because removal of extracellular Ca 2+ abolished the constriction. This constriction was partially inhibited by an L-type Ca 2+ channel inhibitor nifedipine (0.5–1 mM). The remaining component was inhibited by L-cis-diltiazem, a selective inhibitor for CNG channels, in a dose-dependent manner. Another CNG channel blocker LY83583 [6-(phenylamino)-5,8-quinolinedione] had similar effect. In the primary cultured smooth muscle cells derived from rat aorta, application of U46619 (100 nM) induced a rise in cytosolic Ca 2+ ([Ca 2+]i), which was inhibited by L-cis-diltiazem. Immunoblot experiments confirmed the presence of CNGA2 protein in vascular smooth muscle cells. Conclusions/Significance: These data suggest a functional role of CNG channels in U-46619-induced Ca 2+ influx and contraction of smooth muscle cells
Variations in white blood count, thromboxane B2 levels and hematocrit in chronic venous hypertension
A sex‐specific, COX‐derived/thromboxane receptor activator causes depolarization and vasoconstriction in male mice mesenteric resistance arteries
Liver Kinase B1 Is Required for Thromboxane Receptor-Dependent Nuclear Factor-κB Activation and Inflammatory Responses
Mediation of reocclusion by thromboxane A2 and serotonin after thrombolysis with tissue-type plasminogen activator in a canine preparation of coronary thrombosis.
Effects of U-46619 on Pulmonary Hemodynamics before and after Administration of Bm-573, a Novel Thromboxane A2 Inhibitor
We studied the effects on pulmonary hemodynamics of U-46619, a thromboxane A2 (TXA2) agonist, before and after administration of a novel TXA2 receptor antagonist and synthase inhibitor (BM-573). Six anesthetized pigs (Ago group) received 6 consecutive injections of U-46619 at 30-min interval and were compared with six anesthetized pigs (Anta group) which received an increasing dosage regimen of BM-573 10 min before each U-46619 injection. Consecutive changes in pulmonary hemodynamics, including characteristic resistance, vascular compliance, and peripheral vascular resistance, were continuously assessed during the experimental protocol using a four-element Windkessel model. At 2 mg/kg, BM-573 completely blocked pulmonary hypertensive effects of U-46619 but pulmonary vascular compliance still decreased. This residual effect can probably be explained by a persistent increase in the tonus of the pulmonary vascular wall smooth muscles sufficient to decrease vascular compliance but not vessel lumen diameter. Such molecule could be a promising therapeutic approach in TXA2 mediated pulmonary hypertension as it is the case in pulmonary embolism, hyperacute lung rejection and endotoxinic shock
Inhibition of cyclic flow variations in stenosed canine coronary arteries by thromboxane A2/prostaglandin H2 receptor antagonists.
- …
