35 research outputs found

    Hematology, plasma biochemistry, and hormonal analysis of captive Louisiana pine snakes (Pituophis ruthveni): effects of intrinsic factors and analytical methodology

    Get PDF
    Blood analyte data are useful in health assessments and management of reptiles. There is a knowledge gap for blood analyte data of the endangered Louisiana pine snake (LPS; Pituophis ruthveni). The objectives of this study were to provide baseline hematology, plasma biochemical, and hormone data of captive LPS, to compare the data in juvenile and adult snakes and in adult snakes by sex, and to investigate methodological differences in hormone (serum vs. plasma) and protein analyses (total solids versus total protein). Blood samples from apparently healthy captive LPS were analyzed for hematology and plasma biochemistry (n = 11) and plasma and serum hormone analyses (n = 9). Packed cell volume (PCV) and absolute heterophils were significantly higher in adult compared with juvenile LPS, while PCV, white blood cell count, and absolute lymphocytes were higher in adult males compared with adult females. Significantly higher plasma concentrations were found in adults compared with juveniles for calcium, total protein, total solids, albumin, globulins, and bile acids. No significant differences were observed in 17β-estradiol measured in serum and plasma when comparing adults and juveniles and for 17β-estradiol in adult males and females. Plasma concentrations of 17β-estradiol were significantly lower than in serum. Serum testosterone in two adult males was 8.33 and 35.53 nmol/L, respectively, while it was undetectable in females and juveniles (n = 5). This study is the first to provide baseline information on blood analytes in endangered LPS, which will be useful for individual animals in managed care and as baseline for future population-level assessments

    An X-ray Spectral Survey of Radio-Loud AGN With ASCA

    Get PDF
    We present a uniform and systematic analysis of the 0.6-10 keV X-ray spectra of radio-loud active galactic nuclei (AGN) observed by ASCA. The sample 10 BLRGs, 5 QSRs, 9 NLRGs, and 10 RGs. At soft X-rays, about half of the NLRGs and all of the RGs exhibit a thermal plasma component, with a bimodal distribution of temperatures and luminosities, suggesting an origin either in a surrounding cluster or loose group or in a hot corona. At energies above 2 keV, a hard power-law component is detected in 90% of cases. The power-law photon indices and luminosities in BLRGs, QSRs, and NLRGs are similar, consistent with orientation-based unification schemes. Significant excess cold absorption is detected in most NLRGs, but also in some BLRGS and QSRs, which was somewhat unexpected. In contrast to Seyfert galaxies, only one object showss the signature of a warm absorber. The nuclear X-ray luminosity is correlated with the luminosity of the [O III] emission line, the FIR emission at 12 microns, and the lobe radio power at 5 GHz. The Fe K line is detected in 50% of BLRGs, one QSR, and a handful of NLRGs. This sample also includes 6 Weak Line Radio Galaxies (WLRGs). Their spectra WLRGs can be generally decomposed into a soft thermal component with hard absrorbed power-law component, which is significantly flatter than any other radio-loud AGNs. Their intrinsic luminosities are two orders of magnitude lower than in other sources of the sample. An interesting possibility is that WLRGs represent an extreme population of radio galaxies in which the central black hole is accreting at a rate well below the Eddington rate.Comment: To appear in the Astrophysical Journal. 72 pages, including many tables and figures. Fig 1 is separate, in TIFF format. Postscript version of fig 1 and postscript version of entire preprint can be obtained from http://www.astro.psu.edu/users/mce/preprint_index.htm

    Epicardial cells derived from human embryonic stem cells augment cardiomyocyte-driven heart regeneration.

    Get PDF
    The epicardium and its derivatives provide trophic and structural support for the developing and adult heart. Here we tested the ability of human embryonic stem cell (hESC)-derived epicardium to augment the structure and function of engineered heart tissue in vitro and to improve efficacy of hESC-cardiomyocyte grafts in infarcted athymic rat hearts. Epicardial cells markedly enhanced the contractility, myofibril structure and calcium handling of human engineered heart tissues, while reducing passive stiffness compared with mesenchymal stromal cells. Transplanted epicardial cells formed persistent fibroblast grafts in infarcted hearts. Cotransplantation of hESC-derived epicardial cells and cardiomyocytes doubled graft cardiomyocyte proliferation rates in vivo, resulting in 2.6-fold greater cardiac graft size and simultaneously augmenting graft and host vascularization. Notably, cotransplantation improved systolic function compared with hearts receiving either cardiomyocytes alone, epicardial cells alone or vehicle. The ability of epicardial cells to enhance cardiac graft size and function makes them a promising adjuvant therapeutic for cardiac repair.: This work was supported by the British Heart Foundation (BHF; Grants NH/11/1/28922, G1000847, FS/13/29/30024 and FS/18/46/33663), Oxford-Cambridge Centre for Regenerative Medicine (RM/13/3/30159), the UK Medical Research Council (MRC) and the Cambridge Hospitals National Institute for Health Research Biomedical Research Centre funding (SS), as well as National Institutes of Health Grants P01HL094374, P01GM081619, R01HL12836 and a grant from the Fondation Leducq Transatlantic Network of Excellence (CEM). J.B. was supported by a Cambridge National Institute for Health Research Biomedical Research Centre Cardiovascular Clinical Research Fellowship and subsequently, by a BHF Studentship (Grant FS/13/65/30441). DI received a University of Cambridge Commonwealth Scholarship. LG is supported by BHF Award RM/l3/3/30159 and LPO is funded by a Wellcome Trust Fellowship (203568/Z/16/Z). NF was supported by BHF grants RG/13/14/30314. NL was supported by the Biotechnology and Biological Sciences Research Council (Institute Strategic Programmes BBS/E/B/000C0419 and BBS/E/B/000C0434). SS and MB were supported by the British Heart Foundation Centre for Cardiovascular Research Excellence. Core support was provided by the Wellcome-MRC Cambridge Stem Cell Institute (203151/Z/16/Z), The authors thank Osiris for provision of the primary mesenchymal stem cells (59

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Palaeoenvironmental evidence for solar forcing of Holocene climate: linkages to solar science

    No full text
    Current concern over ‘greenhouse’ warming and possible human influence upon global climate has been countered by claims that recent advances in solar theory demonstrate a greater role than previously thought for solar forcing in recent climate change. This is still disputed for this century, but new evidence from a range of palaeoenvironmental indicators lends strong support to the notion that not only the long-term (105 to 103 years) climate changes of the Pleistocene but also short-term (101 to 102 years) climate changes in the Holocene may derive in large or small part from solar variability. Evidence from recent research into proxy climate records is reviewed and set in the context of recent advances elsewhere in studies of late Quaternary palaeoenvironments and in solar science

    BME 2.0: Engineering the Future of Medicine

    No full text
    If the 20th century was the age of mapping and controlling the external world, the 21st century is the biomedical age of mapping and controlling the biological internal world. The biomedical age is bringing new technological breakthroughs for sensing and controlling human biomolecules, cells, tissues, and organs, which underpin new frontiers in the biomedical discovery, data, biomanufacturing, and translational sciences. This article reviews what we believe will be the next wave of biomedical engineering (BME) education in support of the biomedical age, what we have termed BME 2.0. BME 2.0 was announced on October 12 2017 at BMES 49 (https://www.bme.jhu.edu/news-events/news/miller-opens-2017-bmes-annual-meeting-with-vision-for-new-bme-era/). We present several principles upon which we believe the BME 2.0 curriculum should be constructed, and from these principles, we describe what view as the foundations that form the next generations of curricula in support of the BME enterprise. The core principles of BME 2.0 education are (a) educate students bilingually, from day 1, in the languages of modern molecular biology and the analytical modeling of complex biological systems; (b) prepare every student to be a biomedical data scientist; (c) build a unique BME community for discovery and innovation via a vertically integrated and convergent learning environment spanning the university and hospital systems; (d) champion an educational culture of inclusive excellence; and (e) codify in the curriculum ongoing discoveries at the frontiers of the discipline, thus ensuring BME 2.0 as a launchpad for training the future leaders of the biotechnology marketplaces. We envision that the BME 2.0 education is the path for providing every student with the training to lead in this new era of engineering the future of medicine in the 21st century
    corecore