67 research outputs found
Geometrically Induced Gauge Structure on Manifolds Embedded in a Higher Dimensional Space
We explain in a context different from that of Maraner the formalism for
describing motion of a particle, under the influence of a confining potential,
in a neighbourhood of an n-dimensional curved manifold M^n embedded in a
p-dimensional Euclidean space R^p with p >= n+2. The effective Hamiltonian on
M^n has a (generally non-Abelian) gauge structure determined by geometry of
M^n. Such a gauge term is defined in terms of the vectors normal to M^n, and
its connection is called the N-connection. In order to see the global effect of
this type of connections, the case of M^1 embedded in R^3 is examined, where
the relation of an integral of the gauge potential of the N-connection (i.e.,
the torsion) along a path in M^1 to the Berry's phase is given through Gauss
mapping of the vector tangent to M^1. Through the same mapping in the case of
M^1 embedded in R^p, where the normal and the tangent quantities are exchanged,
the relation of the N-connection to the induced gauge potential on the
(p-1)-dimensional sphere S^{p-1} (p >= 3) found by Ohnuki and Kitakado is
concretely established. Further, this latter which has the monopole-like
structure is also proved to be gauge-equivalent to the spin-connection of
S^{p-1}. Finally, by extending formally the fundamental equations for M^n to
infinite dimensional case, the present formalism is applied to the field theory
that admits a soliton solution. The resultant expression is in some respects
different from that of Gervais and Jevicki.Comment: 52 pages, PHYZZX. To be published in Int. J. Mod. Phys.
Case report: a case of intractable Meniere's disease treated with autogenic training
<p>Abstract</p> <p>Background</p> <p>Psychological stress plays an important role in the onset and course of Meniere's disease. Surgical therapy and intratympanic gentamicin treatment are options for cases that are intractable to conventional medical therapy. Psychotherapy, however, including autogenic training (AT), which can be used for general relaxation, is not widely accepted. This paper describes the successful administration of AT in a subject suffering from intractable Meniere's disease.</p> <p>Case presentation</p> <p>A 51-year-old male patient has suffered from fluctuating right sensorineural hearing loss with vertigo since 1994. In May 2002, he was first admitted to our hospital due to a severe vertigo attack accompanied by right sensorineural hearing loss. Spontaneous nystagmus toward the right side was observed. Since April 2004, he has experienced vertigo spells with right-sided tinnitus a few times per month that are intractable to conventional medical therapy. After four months, tympanic tube insertion was preformed in the right tympanic membrane. Intratympanic injection of dexamethasone was ineffective. He refused Meniett therapy and intratympanic gentamicin injection. In addition to his vertigo spells, he suffered from insomnia, tinnitus, and anxiety. Tranquilizers such as benzodiazepines and antidepressants such as serotonin selective re-uptake inhibitors (SSRIs) failed to stop the vertigo and only slightly improved his insomnia. In December 2006, the patient began psychological counseling with a psychotherapist. After brief psychological counseling along with cognitive behavior therapy (CBT), he began AT. He diligently and regularly continued his AT training in his home according to a written timetable. His insomnia, tinnitus, and vertigo spells disappeared within a few weeks after only four psychotherapy sessions. In order to master the six standard formulas of AT, he underwent two more sessions. Thereafter, he underwent follow-up for 9 months with no additional treatment. He is now free from drugs, including tranquilizers, and has continued AT. No additional treatment was performed. When we examined him <b>six </b>and nine months later for follow-up, he was free of vertigo and insomnia.</p> <p>Conclusion</p> <p>AT together with CBT can be a viable and palatable treatment option for Meniere's disease patients who are not responsive to other therapies.</p
Influence of microstructure on fatigue property of ultra high-strength steels
Ultra-high-strength steels (with tensile strength higher than 980 MPa) are widely used in automobile manufacturing owing to their lightweight that contributes to fuel efficiency. The fatigue strength of ultra-high-strength steels with a notch tends to decrease, which is known as the effect of notch sensitivity. In this study, 4-point bending fatigue tests were performed to examine the fatigue strength and notch sensitivity of four steels; namely 590 MPa class steel, 980 MPa class martensitic steel, 980 MPa class bainitic steel, and 980 MPa class precipitation hardening steel plates with three different stress concentration factors. The results indicate that the fatigue strength and notch sensitivity of 980 MPa class steel specimens were higher than those of 590 MPa class steel specimens. The notch sensitivities of tested plate specimens were lower than those reported for cylindrical specimens of bainitic ultra-high-strength steels. Fatigue crack observation revealed that the cracks initiated in 590 MPa class steel, 980 MPa class bainitic, and martensitic steel propagated southward from the lowest bottom of notch. Although similar initial crack propagation pattern was detected in precipitation hardening steel, the crack changed direction when it reached the central part of the specimen
Influence of microstructure on fatigue property of ultra high-strength steels
Ultra-high-strength steels (with tensile strength higher than 980 MPa) are widely used in automobile manufacturing owing to their lightweight that contributes to fuel efficiency. The fatigue strength of ultra-high-strength steels with a notch tends to decrease, which is known as the effect of notch sensitivity. In this study, 4-point bending fatigue tests were performed to examine the fatigue strength and notch sensitivity of four steels; namely 590 MPa class steel, 980 MPa class martensitic steel, 980 MPa class bainitic steel, and 980 MPa class precipitation hardening steel plates with three different stress concentration factors. The results indicate that the fatigue strength and notch sensitivity of 980 MPa class steel specimens were higher than those of 590 MPa class steel specimens. The notch sensitivities of tested plate specimens were lower than those reported for cylindrical specimens of bainitic ultra-high-strength steels. Fatigue crack observation revealed that the cracks initiated in 590 MPa class steel, 980 MPa class bainitic, and martensitic steel propagated vertically from the lowest bottom of notch. Although similar initial crack propagation pattern was detected in precipitation hardening steel, the crack changed direction when it reached the central part of the specimen
- …