7 research outputs found
RNA Modification in Inflammatory Bowel Diseases
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder characterized by damage to the intestinal mucosa, which is caused by a combination of factors. These include genetic and epigenetic alterations, environmental influence, microorganism interactions, and immune conditions. Some populations with IBD show a cancer-prone phenotype. Recent studies have provided insight into the involvement of RNA modifications in the specific pathogenesis of IBD through regulation of RNA biology in epithelial and immune cells. Studies of several RNA modification-targeting reagents have shown preferable outcomes in patients with colitis. Here, we note a new awareness of RNA modification in the targeting of IBD and related diseases, which will contribute to early diagnosis, disease monitoring, and possible control by innovative therapeutic approaches
Significance of signal recognition particle 9 nuclear translocation: Implications for pancreatic cancer prognosis and functionality
Sato H., Meng S., Sasaki K., et al. Significance of signal recognition particle 9 nuclear translocation: Implications for pancreatic cancer prognosis and functionality. International Journal of Oncology 65, 74 (2024); https://doi.org/10.3892/ijo.2024.5662.Signal recognition particles (SRPs) are essential for regulating intracellular protein transport and secretion. Patients with tumors with high SRP9 expression tend to have a poorer overall survival. However, to the best of our knowledge, no reports have described the relationship between SRP9 localization and prognosis in pancreatic cancer. Thus, the present study aimed to investigate this relationship. Immunohistochemical staining for SRP9 using excised specimens from pancreatic cancer surgery cases without preoperative chemotherapy or radiotherapy showed that SRP9 was preferentially expressed in the nucleus of the cancerous regions in some cases, which was hardly detected in other cases, indicating that SRP9 was transported to the nucleus in the former cases. To compare the prognosis of patients with SRP9 nuclear translocation, patients were divided into two groups: Those with a nuclear translocation rate of >50% and those with a nuclear translocation rate of ≤50%. The nuclear translocation rate of >50% group had a significantly better recurrence-free survival than the nuclear translocation rate of ≤50% group (P=0.037). Subsequent in vitro experiments were conducted; notably, the nuclear translocation rate of SRP9 was reduced under amino acid-deficient conditions, suggesting that multiple factors are involved in this phenomenon. To further study the function of SRP9 nuclear translocation, in vitro experiments were performed by introducing SRP9 splicing variants (v1 and v2) and their deletion mutants lacking C-terminal regions into MiaPaCa pancreatic cancer cells. The results demonstrated that both splicing variants showed nuclear translocation regardless of the C-terminal deletions, suggesting the role of the N-terminal regions. Given that SRP9 is an RNA-binding protein, the study of RNA immunoprecipitation revealed that signaling pathways involved in cancer progression and protein translation were downregulated in nuclear-translocated v1 and v2. Undoubtedly, further studies of the nuclear translocation of SRP9 will open an avenue to optimize the precise evaluation and therapeutic control of pancreatic cancer
Methylosystem for Cancer Sieging Strategy
As cancer is a genetic disease, methylation defines a biologically malignant phenotype of cancer in the association of one-carbon metabolism-dependent S-adenosylmethionine (SAM) as a methyl donor in each cell. Methylated substances are involved in intracellular metabolism, but via intercellular communication, some of these can also be secreted to affect other substances. Although metabolic analysis at the single-cell level remains challenging, studying the “methylosystem” (i.e., the intercellular and intracellular communications of upstream regulatory factors and/or downstream effectors that affect the epigenetic mechanism involving the transfer of a methyl group from SAM onto the specific positions of nucleotides or other metabolites in the tumor microenvironment) and tracking these metabolic products are important research tasks for understanding spatial heterogeneity. Here, we discuss and highlight the involvement of RNA and nicotinamide, recently emerged targets, in SAM-producing one-carbon metabolism in cancer cells, cancer-associated fibroblasts, and immune cells. Their significance and implications will contribute to the discovery of efficient methods for the diagnosis of and therapeutic approaches to human cancer
EpisomiR, a New Family of miRNAs, and Its Possible Roles in Human Diseases
MicroRNAs (miRNAs) are synthesized through a canonical pathway and play a role in human diseases, such as cancers and cardiovascular, neurodegenerative, psychiatric, and chronic inflammatory diseases. The development of sequencing technologies has enabled the identification of variations in noncoding miRNAs. These miRNA variants, called isomiRs, are generated through a non-canonical pathway, by several enzymes that alter the length and sequence of miRNAs. The isomiR family is, now, expanding further to include episomiRs, which are miRNAs with different modifications. Since recent findings have shown that isomiRs reflect the cell-specific biological function of miRNAs, knowledge about episomiRs and isomiRs can, possibly, contribute to the optimization of diagnosis and therapeutic technology for precision medicine
Impact of One-Carbon Metabolism-Driving Epitranscriptome as a Therapeutic Target for Gastrointestinal Cancer
One-carbon (1C) metabolism plays a key role in biological functions linked to the folate cycle. These include nucleotide synthesis; the methylation of DNA, RNA, and proteins in the methionine cycle; and transsulfuration to maintain the redox condition of cancer stem cells in the tumor microenvironment. Recent studies have indicated that small therapeutic compounds affect the mitochondrial folate cycle, epitranscriptome (RNA methylation), and reactive oxygen species reactions in cancer cells. The epitranscriptome controls cellular biochemical reactions, but is also a platform for cell-to-cell interaction and cell transformation. We present an update of recent advances in the study of 1C metabolism related to cancer and demonstrate the areas where further research is needed. We also discuss approaches to therapeutic drug discovery using animal models and propose further steps toward developing precision cancer medicine
COVID-19 Drug Discovery Using Intensive Approaches
Since the infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was reported in China during December 2019, the coronavirus disease 2019 (COVID-19) has spread on a global scale, causing the World Health Organization (WHO) to issue a warning. While novel vaccines and drugs that target SARS-CoV-2 are under development, this review provides information on therapeutics which are under clinical trials or are proposed to antagonize SARS-CoV-2. Based on the information gained from the responses to other RNA coronaviruses, including the strains that cause severe acute respiratory syndrome (SARS)-coronaviruses and Middle East respiratory syndrome (MERS), drug repurposing might be a viable strategy. Since several antiviral therapies can inhibit viral replication cycles or relieve symptoms, mechanisms unique to RNA viruses will be important for the clinical development of antivirals against SARS-CoV-2. Given that several currently marketed drugs may be efficient therapeutic agents for severe COVID-19 cases, they may be beneficial for future viral pandemics and other infections caused by RNA viruses when standard treatments are unavailable
Immuno-Surgical Management of Pancreatic Cancer with Analysis of Cancer Exosomes
Exosomes (EXs), a type of extracellular vesicles secreted from various cells and especially cancer cells, mesenchymal cells, macrophages and other cells in the tumor microenvironment (TME), are involved in biologically malignant behaviors of cancers. Recent studies have revealed that EXs contain microRNAs on their inside and express proteins and glycolipids on their outsides, every component of which plays a role in the transmission of genetic and/or epigenetic information in cell-to-cell communications. It is also known that miRNAs are involved in the signal transduction. Thus, EXs may be useful for monitoring the TME of tumor tissues and the invasion and metastasis, processes that are associated with patient survival. Because several solid tumors secrete immune checkpoint proteins, including programmed cell death-ligand 1, the EX-mediated mechanisms are suggested to be potent targets for monitoring patients. Therefore, a companion therapeutic approach against cancer metastasis to distant organs is proposed when surgical removal of the primary tumor is performed. However, EXs and immune checkpoint mechanisms in pancreatic cancer are not fully understood, we provide an update on the recent advances in this field and evidence that EXs will be useful for maximizing patient benefit in precision medicine