55 research outputs found

    Essential role for ALCAM gene silencing in megakaryocytic differentiation of K562 cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Activated leukocyte cell adhesion molecule (ALCAM/CD166) is expressed by hematopoietic stem cells. However, its role in hematopoietic differentiation has not previously been defined.</p> <p>Results</p> <p>In this study, we show that ALCAM expression is silenced in erythromegakaryocytic progenitor cell lines. In agreement with this finding, the ALCAM promoter is occupied by GATA-1 <it>in vivo</it>, and a cognate motif at -850 inhibited promoter activity in K562 and MEG-01 cells. Gain-of-function studies showed that ALCAM clusters K562 cells in a process that requires PKC. Induction of megakaryocytic differentiation in K562 clones expressing ALCAM activated PKC-δ and triggered apoptosis.</p> <p>Conclusions</p> <p>There is a lineage-specific silencing of ALCAM in bi-potential erythromegakaryocytic progenitor cell lines. Marked apoptosis of ALCAM-expressing K562 clones treated with PMA suggests that aberrant ALCAM expression in erythromegakaryocytic progenitors may contribute to megakaryocytopenia.</p

    Elevated Circulating Angiogenic Progenitors and White Blood Cells Are Associated with Hypoxia-Inducible Angiogenic Growth Factors in Children with Sickle Cell Disease

    Get PDF
    We studied the number and function of angiogenic progenitor cells and growth factors in children aged 5–18 years without acute illness, 43 with Hemoglobin SS and 68 with normal hemoglobin. Hemoglobin SS subjects had at least twice as many mononuclear cell colonies and more circulating progenitor cell than Control subjects. Plasma concentrations of erythropoietin, angiopoietin-2, and stromal-derived growth factor (SDF)-1α were significantly higher in children with Hemoglobin SS compared to Control subjects. In a multivariate analysis model, SDF-1α concentration was found to be associated with both CPC number and total white blood cell count in the Hemoglobin SS group, suggesting that SDF-1α produced by ischemic tissues plays a role in mobilizing these cells in children with Hemoglobin SS. Despite having a higher number of angiogenic progenitor cells, children with Hemoglobin SS had slower migration of cultured mononuclear cells

    Activated leukocyte cell adhesion molecule in breast cancer: prognostic indicator

    Get PDF
    INTRODUCTION: Activated leukocyte cell adhesion molecule (ALCAM) (CD166) is an immunoglobulin molecule that has been implicated in cell migration. The present study examined the expression of ALCAM in human breast cancer and assessed its prognostic value. METHODS: The immunohistochemical distribution and location of ALCAM was assessed in normal breast tissue and carcinoma. The levels of ALCAM transcripts in frozen tissue (normal breast, n = 32; breast cancer, n = 120) were determined using real-time quantitative PCR. The results were then analyzed in relation to clinical data including the tumor type, the grade, the nodal involvement, distant metastases, the tumor, node, metastasis (TNM) stage, the Nottingham Prognostic Index (NPI), and survival over a 6-year follow-up period. RESULTS: Immunohistochemical staining on tissue sections in ducts/acini in normal breast and in breast carcinoma was ALCAM-positive. Differences in the number of ALCAM transcripts were found in different types of breast cancer. The level of ALCAM transcripts was lower (P = 0.05) in tumors from patients who had metastases to regional lymph nodes compared with those patients without, in higher grade tumors compared with Grade 1 tumors (P < 0.01), and in TNM Stage 3 tumors compared with TNM Stage 1 tumors (P < 0.01). Tumors from patients with poor prognosis (with NPI > 5.4) had significantly lower levels (P = 0.014) of ALCAM transcripts compared with patients with good prognosis (with NPI < 3.4), and tumors from patients with local recurrence had significantly lower levels than those patients without local recurrence or metastases (P = 0.04). Notably, tumors from patients who died of breast cancer had significantly lower levels of ALCAM transcripts (P = 0.0041) than those with primary tumors but no metastatic disease or local recurrence. Patients with low levels of ALCAM transcripts had significantly (P = 0.009) more incidents (metastasis, recurrence, death) compared with patients with primary breast tumors with high levels of ALCAM transcripts. CONCLUSIONS: In the present panel of breast cancer specimens, decreased levels of ALCAM correlated with the nodal involvement, the grade, the TNM stage, the NPI, and the clinical outcome (local recurrence and death). The data suggest that decreased ALCAM expression is of clinical significance in breast cancer, and that reduced expression indicates a more aggressive phenotype and poor prognosis

    Heme Mediated STAT3 Activation in Severe Malaria

    Get PDF
    The mortality of severe malaria [cerebral malaria (CM), severe malaria anemia (SMA), acute lung injury (ALI) and acute respiratory distress syndrome (ARDS)] remains high despite the availability associated with adequate treatments. Recent studies in our laboratory and others have revealed a hitherto unknown correlation between chemokine CXCL10/CXCR3, Heme/HO-1 and STAT3 and cerebral malaria severity and mortality. Although Heme/HO-1 and CXCL10/CXCR3 interactions are directly involved in the pathogenesis of CM and fatal disease, the mechanism dictating how Heme/HO-1 and CXCL10/CXCR3 are expressed and regulated under these conditions is still unknown. We therefore tested the hypothesis that these factors share common signaling pathways and may be mutually regulated.We first clarified the roles of Heme/HO-1, CXCL10/CXCR3 and STAT3 in CM pathogenesis utilizing a well established experimental cerebral malaria mouse (ECM, P. berghei ANKA) model. Then, we further determined the mechanisms how STAT3 regulates HO-1 and CXCL10 as well as mutual regulation among them in CRL-2581, a murine endothelial cell line.The results demonstrate that (1) STAT3 is activated by P. berghei ANKA (PBA) infection in vivo and Heme in vitro. (2) Heme up-regulates HO-1 and CXCL10 production through STAT3 pathway, and regulates CXCL10 at the transcriptional level in vitro. (3) HO-1 transcription is positively regulated by CXCL10. (4) HO-1 regulates STAT3 signaling.Our data indicate that Heme/HO-1, CXCL10/CXCR3 and STAT3 molecules as well as related signaling pathways play very important roles in the pathogenesis of severe malaria. We conclude that these factors are mutually regulated and provide new opportunities to develop potential novel therapeutic targets that could be used to supplement traditional prophylactics and treatments for malaria and improve clinical outcomes while reducing malaria mortality. Our ultimate goal is to develop novel therapies targeting Heme or CXCL10-related biological signaling molecules associated with development of fatal malaria

    Spatiotemporal Dysfunction of the Vascular Permeability Barrier in Transgenic Mice with Sickle Cell Disease

    Get PDF
    Sickle cell disease (SCD) is characterized by chronic intravascular hemolysis that generates excess cell-free hemoglobin in the blood circulation. Hemoglobin causes multiple endothelial dysfunctions including increased vascular permeability, impaired reactivity to vasoactive agonists, and increased adhesion of leukocytes to the endothelium. While the adhesive and vasomotor defects of SCD associated with cell-free hemoglobin are well defined, the vascular permeability phenotype remains poorly appreciated. We addressed this issue in two widely used and clinically relevant mouse models of SCD. We discovered that the endothelial barrier is normal in most organs in the young but deteriorates with aging particularly in the lung. Indeed, middle-aged sickle mice developed pulmonary edema revealing for the first time similarities in the chronic permeability phenotypes of the lung in mice and humans with SCD. Intravenous administration of lysed red blood cells into the circulation of sickle mice increased vascular permeability significantly in the lung without impacting permeability in other organs. Thus, increased vascular permeability is an endothelial dysfunction of SCD with the barrier in the lung likely the most vulnerable to acute inflammation

    Comparative Analysis of Pain Behaviours in Humanized Mouse Models of Sickle Cell Anemia.

    No full text
    Pain is a hallmark feature of sickle cell anemia (SCA) but management of chronic as well as acute pain remains a major challenge. Mouse models of SCA are essential to examine the mechanisms of pain and develop novel therapeutics. To facilitate this effort, we compared humanized homozygous BERK and Townes sickle mice for the effect of gender and age on pain behaviors. Similar to previously characterized BERK sickle mice, Townes sickle mice show more mechanical, thermal, and deep tissue hyperalgesia with increasing age. Female Townes sickle mice demonstrate more hyperalgesia compared to males similar to that reported for BERK mice and patients with SCA. Mechanical, thermal and deep tissue hyperalgesia increased further after hypoxia/reoxygenation (H/R) treatment in Townes sickle mice. Together, these data show BERK sickle mice exhibit a significantly greater degree of hyperalgesia for all behavioral measures as compared to gender- and age-matched Townes sickle mice. However, the genetically distinct "knock-in" strategy of human α and β transgene insertion in Townes mice as compared to BERK mice, may provide relative advantage for further genetic manipulations to examine specific mechanisms of pain

    Global gene expression profiling of endothelium exposed to heme reveals an organ-specific induction of cytoprotective enzymes in sickle cell disease.

    Get PDF
    Sickle cell disease (SCD) is characterized by hemolysis, vaso-occlusion and ischemia reperfusion injury. These events cause endothelial dysfunction and vasculopathies in multiple systems. However, the lack of atherosclerotic lesions has led to the idea that there are adaptive mechanisms that protect the endothelium from major vascular insults in SCD patients. The molecular bases for this phenomenon are poorly defined. This study was designed to identify the global profile of genes induced by heme in the endothelium, and assess expression of the heme-inducible cytoprotective enzymes in major organs impacted by SCD.Total RNA isolated from heme-treated endothelial monolayers was screened with the Affymetrix U133 Plus 2.0 chip, and the microarray data analyzed using multiple bioinformatics software. Hierarchical cluster analysis of significantly differentially expressed genes successfully segregated heme and vehicle-treated endothelium. Validation studies showed that the induction of cytoprotective enzymes by heme was influenced by the origin of endothelial cells, the duration of treatment, as well as the magnitude of induction of individual enzymes. In agreement with these heterogeneities, we found that induction of two major Nrf2-regulated cytoprotective enzymes, heme oxygenase-1 and NAD(P)H:quinone oxidoreductase-1 is organ-specific in two transgenic mouse models of SCD. This data was confirmed in the endothelium of post-mortem lung tissues of SCD patients.Individual organ systems induce unique profiles of cytoprotective enzymes to neutralize heme in SCD. Understanding this heterogeneity may help to develop effective therapies to manage vasculopathies of individual systems
    corecore