964 research outputs found

    Investigations of Protostellar Outflow Launching and Gas Entrainment: Hydrodynamic Simulations and Molecular Emission

    Full text link
    We investigate protostellar outflow evolution, gas entrainment, and star formation efficiency using radiation-hydrodynamic simulations of isolated, turbulent low-mass cores. We adopt an X-wind launching model, in which the outflow rate is coupled to the instantaneous protostellar accretion rate and evolution. We vary the outflow collimation angle from θ\theta=0.01-0.1 and find that even well collimated outflows effectively sweep up and entrain significant core mass. The Stage 0 lifetime ranges from 0.14-0.19 Myr, which is similar to the observed Class 0 lifetime. The star formation efficiency of the cores spans 0.41-0.51. In all cases, the outflows drive strong turbulence in the surrounding material. Although the initial core turbulence is purely solenoidal by construction, the simulations converge to approximate equipartition between solenoidal and compressive motions due to a combination of outflow driving and collapse. When compared to a simulation of a cluster of protostars, which is not gravitationally centrally condensed, we find that the outflows drive motions that are mainly solenoidal. The final turbulent velocity dispersion is about twice the initial value of the cores, indicating that an individual outflow is easily able to replenish turbulent motions on sub-parsec scales. We post-process the simulations to produce synthetic molecular line emission maps of 12^{12}CO, 13^{13}CO, and C18^{18}O and evaluate how well these tracers reproduce the underlying mass and velocity structure.Comment: Accepted to ApJ, 17 pages, 15 figure

    An Infrared Camera for Leuschner Observatory and the Berkeley Undergraduate Astronomy Lab

    Full text link
    We describe the design, fabrication, and operation of an infrared camera which is in use at the 30-inch telescope of the Leuschner Observatory. The camera is based on a Rockwell PICNIC 256 x 256 pixel HgCdTe array, which is sensitive from 0.9-2.5 micron. The primary purpose of this telescope is for undergraduate instruction. The cost of the camera has been minimized by using commercial parts whereever practical. The camera optics are based on a modified Offner relay which forms a cold pupil where stray thermal radiation from the telescope is baffled. A cold, six-position filter wheel is driven by a cryogenic stepper motor, thus avoiding any mechanical feed throughs. The array control and readout electronics are based on standard PC cards; the only custom component is a simple interface card which buffers the clocks and amplifies the analog signals from the array.Comment: 13 pages, 17 figures. Submitted to Publications of the Astronomical Society of the Pacific: 2001 Jan 10, Accepted 2001 Jan 1

    The Kinematics of Molecular Cloud Cores in the Presence of Driven and Decaying Turbulence: Comparisons with Observations

    Get PDF
    In this study we investigate the formation and properties of prestellar and protostellar cores using hydrodynamic, self-gravitating Adaptive Mesh Refinement simulations, comparing the cases where turbulence is continually driven and where it is allowed to decay. We model observations of these cores in the C18^{18}O(21)(2\to 1), NH3(1,1)_3(1,1), and N2_2H+(10)^+(1\to 0) lines, and from the simulated observations we measure the linewidths of individual cores, the linewidths of the surrounding gas, and the motions of the cores relative to one another. Some of these distributions are significantly different in the driven and decaying runs, making them potential diagnostics for determining whether the turbulence in observed star-forming clouds is driven or decaying. Comparing our simulations with observed cores in the Perseus and ρ\rho Ophiuchus clouds shows reasonably good agreement between the observed and simulated core-to-core velocity dispersions for both the driven and decaying cases. However, we find that the linewidths through protostellar cores in both simulations are too large compared to the observations. The disagreement is noticably worse for the decaying simulation, in which cores show highly supersonic infall signatures in their centers that decrease toward their edges, a pattern not seen in the observed regions. This result gives some support to the use of driven turbulence for modeling regions of star formation, but reaching a firm conclusion on the relative merits of driven or decaying turbulence will require more complete data on a larger sample of clouds as well as simulations that include magnetic fields, outflows, and thermal feedback from the protostars.Comment: 18 pages, 12 figures, accepted to A
    corecore