4 research outputs found
Transient Thermo-Fluid Analysis of Free Falling CuCl and AgCl Droplets with Liquid-to-Solid Phase Change
Hydrogen extraction from nature is a time-consuming and energy-intensive procedure. Most of the current methods of extracting H2 are not eco-friendly, and the thermochemical copper-chlorine (Cu-Cl) cycle is a promising alternative since the ingredients are continuously recycled within the cycle without discharging pollutants into the atmosphere. In this study, the heat recovered from molten cuprous chloride (CuCl) salt produced in one of the reactors and quenched in a water bath is analyzed numerically to determine the amount of thermal energy that can be recovered and improve the efficiency of the Cu-Cl cycle. The quenching cell is simulated in an inert atmosphere since CuCl is highly reactive in the presence of oxygen. The interactions of various diameters of CuCl droplets within nitrogen (N2) are numerically modeled in COMSOL Multiphysics. Silver chloride (AgCl) is also used in this study to validate the phase-change process. It was discovered in this study that during the free fall, the outer surface of the molten droplets solidifies, and the phase change of droplets slowly propagates radially inwards, which slows down the energy dissipation. It was also determined that the average internal temperature of the droplet does not change substantially with droplet diameter or quenching height. Based on this study, the net energy recovered after quenching was calculated to be around 23 kJ during 1 kg of H2 production
Noise Pollution Prevention in Wind Turbines: Status and Recent Advances
The global push towards sustainability has led to increased interest in alternative power sources other than coal and fossil fuels. One of these sustainable sources is to harness energy from the wind through wind turbines. However, a significant hindrance preventing the widespread use of wind turbines is the noise they produce. This study reviews recent advances in the area of noise pollution from wind turbines. To date, there have been many different noise control studies. While there are many different sources of noise, the main one is aerodynamic noise. The largest contributor to aerodynamic noise comes from the trailing edge of wind turbine blades. The aim of this paper is to critically analyse and compare the different methods currently being implemented and investigated to reduce noise production from wind turbines, with a focus on the noise generated from the trailing edge