358 research outputs found

    Performance assessment and diagnosis of refinery control loops

    Get PDF
    This paper discusses the application of control loop performance assessment (Desborough and Harris, 1992) in a refinery setting. In a large process it is not feasible to tailor the parameters of the algorithm to every individual control loop. A procedure is illustrated for selecting default values which make it possible to implement the technology on a refinery-wide scale. For instance, it is shown that the prediction horizon perameter in the CLPA algorithm can be set so that the analysis is sensitive to the persistent signals that cause loss of performance. Default values are suggested for refinery applications.A frequent cause of loss of performance in a control loop is a persistent oscillation due to a valve nonlinearity or a tuning fault. The paper presents an operational signatures in the form of an estimate of the closed loop impulse response that suggest the causes of such oscillations

    Generalized Green-Kubo formulas for fluids with impulsive, dissipative, stochastic and conservative interactions

    Get PDF
    We present a generalization of the Green-Kubo expressions for thermal transport coefficients μ\mu in complex fluids of the generic form, μ=μ+0dtV01\mu= \mu_\infty +\int^\infty_0 dt V^{-1} _0, i.e. a sum of an instantaneous transport coefficient μ\mu_\infty, and a time integral over a time correlation function in a state of thermal equilibrium between a current JJ and a transformed current JϵJ_\epsilon. The streaming operator exp(tL)\exp(t{\cal L}) generates the trajectory of a dynamical variable J(t)=exp(tL)JJ(t) =\exp(t{\cal L}) J when used inside the thermal average 0_0. These formulas are valid for conservative, impulsive (hard spheres), stochastic and dissipative forces (Langevin fluids), provided the system approaches a thermal equilibrium state. In general μ0\mu_\infty \neq 0 and JϵJJ_\epsilon \neq J, except for the case of conservative forces, where the equality signs apply. The most important application in the present paper is the hard sphere fluid.Comment: 14 pages, no figures. Version 2: expanded Introduction and section II specifying the classes of fluids covered by this theory. Some references added and typos correcte

    Swelling-collapse transition of self-attracting walks

    Full text link
    We study the structural properties of self-attracting walks in d dimensions using scaling arguments and Monte Carlo simulations. We find evidence for a transition analogous to the \Theta transition of polymers. Above a critical attractive interaction u_c, the walk collapses and the exponents \nu and k, characterising the scaling with time t of the mean square end-to-end distance ~ t^{2 \nu} and the average number of visited sites ~ t^k, are universal and given by \nu=1/(d+1) and k=d/(d+1). Below u_c, the walk swells and the exponents are as with no interaction, i.e. \nu=1/2 for all d, k=1/2 for d=1 and k=1 for d >= 2. At u_c, the exponents are found to be in a different universality class.Comment: 6 pages, 5 postscript figure

    K–Te photocathodes: A new electron source for photoinjectors

    Get PDF
    K–Te photocathodes deposited on a Mo substrate have been successfully used as an electron source in the free electron laser of University of Twente. Long lifetimes have been measured: after more than 20 h of operation in the accelerator a K–Te cathode with 4.75% initial quantum efficiency still displays a 1.1% quantum efficiency at 259 nm. Moreover, the quantum efficiency of this cathode versus operation time can be fitted by an exponential decay curve, which saturates asymptotically to a 1.03% value, suggesting that a quantum efficiency close to 1% could be sustained for very long operation times. Films degraded by use can be recovered to a quantum efficiency which is close to the initial value, by heating the substrate at temperatures between 100 and 330 °C. A new procedure to obtain K–Te cathodes with high (up to 11%) quantum efficiencies is described

    Haemodynamic consequences of changing bicarbonate and calcium concentrations in haemodialysis fluids

    Get PDF
    Background. In a previous study we demonstrated that mild metabolic alkalosis resulting from standard bicarbonate haemodialysis induces hypotension. In this study, we have further investigated the changes in systemic haemodynamics induced by bicarbonate and calcium, using non-invasive procedures

    TOX Regulates Growth, DNA Repair, and Genomic Instability in T-cell Acute Lymphoblastic Leukemia

    Get PDF
    T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy of thymocytes. Using a transgenic screen in zebrafish, thymocyte selection–associated high mobility group box protein (TOX) was uncovered as a collaborating oncogenic driver that accelerated T-ALL onset by expanding the initiating pool of transformed clones and elevating genomic instability. TOX is highly expressed in a majority of human T-ALL and is required for proliferation and continued xenograft growth in mice. Using a wide array of functional analyses, we uncovered that TOX binds directly to KU70/80 and suppresses recruitment of this complex to DNA breaks to inhibit nonhomologous end joining (NHEJ) repair. Impaired NHEJ is well known to cause genomic instability, including development of T-cell malignancies in KU70- and KU80-deficient mice. Collectively, our work has uncovered important roles for TOX in regulating NHEJ by elevating genomic instability during leukemia initiation and sustaining leukemic cell proliferation following transformation
    corecore