118 research outputs found

    Spin noise spectroscopy in GaAs (110) quantum wells: Access to intrinsic spin lifetimes and equilibrium electron dynamics

    Get PDF
    In this letter, the first spin noise spectroscopy measurements in semiconductor systems of reduced effective dimensionality are reported. The non-demolition measurement technique gives access to the otherwise concealed intrinsic, low temperature electron spin relaxation time of n-doped GaAs (110) quantum wells and to the corresponding low temperature anisotropic spin relaxation. The Brownian motion of the electrons within the spin noise probe laser spot becomes manifest in a modification of the spin noise line width. Thereby, the spatially resolved observation of the stochastic spin polarization uniquely allows to study electron dynamics at equilibrium conditions with a vanishing total momentum of the electron system

    Optical Spin Noise of a Single Hole Spin Localized in an (InGa)As Quantum Dot

    Get PDF
    We advance spin noise spectroscopy to the ultimate limit of single spin detection. This technique enables the measurement of the spin dynamic of a single heavy hole localized in a flat (InGa)As quantum dot. Magnetic field and light intensity dependent studies reveal even at low magnetic fields a strong magnetic field dependence of the longitudinal heavy hole spin relaxation time with an extremely long T1T_1 of ≥\ge 180 μ\mus at 31 mT and 5 K. The wavelength dependence of the spin noise power discloses for finite light intensities an inhomogeneous single quantum dot spin noise spectrum which is explained by charge fluctuations in the direct neighborhood of the quantum dot. The charge fluctuations are corroborated by the distinct intensity dependence of the effective spin relaxation rate

    GHz Spin Noise Spectroscopy in n-Doped Bulk GaAs

    Get PDF
    We advance spin noise spectroscopy to an ultrafast tool to resolve high frequency spin dynamics in semiconductors. The optical non-demolition experiment reveals the genuine origin of the inhomogeneous spin dephasing in n-doped GaAs wafers at densities at the metal-to-insulator transition. The measurements prove in conjunction with depth resolved spin noise measurements that the broadening of the spin dephasing rate does not result from thermal fluctuations or spin-phonon interaction, as previously suggested, but from surface electron depletion

    Towards bose-einstein condensation of semiconductor excitons: The biexciton polarization effect

    Get PDF
    We theoretically predict a strong influence of stimulated exciton-exciton scattering on semiconductor luminescence. The stimulated scattering causes circularly polarized instead of unpolarized emission at the biexciton emission line in a degenerate gas of partly spin polarized excitons. The biexciton polarization effect increases with increasing exciton densities and decreasing temperatures and approaches almost unity in the ultimate case of Bose-Einstein condensation. Time- and polarization-resolved luminescence measurements evidence the biexciton polarization effect both in ZnSe and GaAs quantum wells. © 2009 The American Physical Society

    Efficient Data Averaging for Spin Noise Spectroscopy in Semiconductors

    Full text link
    Spin noise spectroscopy (SNS) is the perfect tool to investigate electron spin dynamics in semiconductors at thermal equilibrium. We simulate SNS measurements and show that ultrafast digitizers with low bit depth enable sensitive, high bandwidth SNS in the presence of strong optical background shot noise. The simulations reveal that optimized input load at the digitizer is crucial for efficient spin noise detection while the bit depth influences the sensitivity rather weakly

    The rise of spin noise spectroscopy in semiconductors: From acoustic to GHz frequencies

    Get PDF
    This article gives an overview on the advance of spin noise spectroscopy (SNS) in semiconductors in the past 8 years from the first measurements in bulk n-GaAs [Oestreich et al., Phys. Rev. Lett. 95, 216603 (2005)] up to the recent achievement of optical detection of the intrinsic spin fluctuations of a single hole confined in an individual self-assembled quantum dot [Dahbashi et al., arXiv:1306.3183 (2013)]. We discuss the general technical implementation of optical SNS and the invaluable profit of the introduction of real-time fast Fourier transform analysis into the data acquisition. By now, the full spin dynamic from the milli- to picosecond timescales can be addressed by SNS and the technique quickly strides ahead to enable real quantum non-demolition measurements in semiconductors. Spin noise spectra recorded in 2005 in bulk n-GaAs with approximately 109 electron spins (Oestreich et al.) and 2013 (Dahbashi et al.) for a single hole spin. The integration time for the latter is more than a factor of 40 shorter due to the significant advances in the measurement technique

    Temperature-dependent electron Landé g factor and the interband matrix element of GaAs

    Get PDF
    Very high precision measurements of the electron Landé g factor in GaAs are presented using spin-quantum beat spectroscopy at low excitation densities and temperatures ranging from 2.6 to 300 K. In colligation with available data for the temperature-dependent effective mass temperature dependence of the interband matrix element within a common five-level k⋅p theory can model both parameters consistently. A strong decrease in the interband matrix element with increasing temperature consistently closes a long lasting gap between experiment and theory and substantially improves the modeling of both parameters. © 2009 The American Physical Society

    Microstructural changes in the reward system are associated with post-stroke depression

    Get PDF
    Background: Studies of lesion location have been unsuccessful in identifying mappings between single brain regions and post-stroke depression (PSD). Based on studies implicating the reward system in major depressive disorder without stroke, we investigated structural correlates within this system and their associations with PSD. Methods: The study enrolled 16 healthy controls, 12 stroke patients with PSD and 34 stroke patients free of PSD. Participants underwent 3T structural and diffusion MRI. Graph theoretical measures were used to examine global topology and whole-brain connectome analyses were employed to assess differences in the interregional connectivity matrix between groups. Structural correlates specific to the reward system were examined from grey matter volumes and by reconstructing its main white matter pathways, namely the medial forebrain bundle and cingulum connections, using deterministic tractography. Fractional anisotropy (FA) was derived as a measure of microstructural organization, and extracellular free-water (FW) as a possible proxy of neuroinflammation. Results: Subnetworks of decreased FA-weighted and increased FW-weighted connectivity were observed in patients with PSD relative to healthy controls. These networks subsumed the majority of regions constituting the reward system. Within the reward system, FA and FW of major connection pathways and grey matter volume were collectively predictive of PSD, explaining 37.8% of the variance in depression severity. Conclusions: PSD is associated with grey matter volume loss, reduced FA and increased extracellular FW in the reward system, similar to features observed in major depression without stroke. Structural characterization of the reward system is a promising biomarker of vulnerability to depression after stroke

    Interplay of Electron and Nuclear Spin Noise in n -Type GaAs

    Get PDF
    We present spin-noise spectroscopy measurements on an ensemble of donor-bound electrons in ultrapure GaAs:Si covering temporal dynamics over 6 orders of magnitude from milliseconds to nanoseconds. The spin-noise spectra detected at the donor-bound exciton transition show the multifaceted dynamical regime of the ubiquitous mutual electron and nuclear spin interaction typical for III-V-based semiconductor systems. The experiment distinctly reveals the finite Overhauser shift of an electron spin precession at zero external magnetic field and a second contribution around zero frequency stemming from the electron spin components parallel to the nuclear spin fluctuations. Moreover, at very low frequencies, features related with time-dependent nuclear spin fluctuations are clearly resolved making it possible to study the intricate nuclear spin dynamics at zero and low magnetic fields. The findings are in agreement with the developed model of electron and nuclear spin noise. © 2015 American Physical Society
    • …
    corecore