53 research outputs found

    Diagnosis of prostate cancer by detection of minichromosome maintenance 5 protein in urine sediments

    Get PDF
    Background: The accuracy of prostate-specific antigen (PSA) testing in prostate cancer detection is constrained by low sensitivity and specificity. Dysregulated expression of minichromosome maintenance (Mcm) 2–7 proteins is an early event in epithelial multistep carcinogenesis and thus MCM proteins represent powerful cancer diagnostic markers. In this study we investigate Mcm5 as a urinary biomarker for prostate cancer detection. Methods: Urine was obtained from 88 men with prostate cancer and from two control groups negative for malignancy. A strictly normal cohort included 28 men with complete, normal investigations, no urinary calculi and serum PSA <2 ng ml–1. An expanded control cohort comprised 331 men with a benign final diagnosis, regardless of PSA level. Urine was collected before and after prostate massage in the cancer patient cohort. An immunofluorometric assay was used to measure Mcm5 levels in urine sediments. Results: The Mcm5 test detected prostate cancer with 82% sensitivity (confidence interval (CI)= 72–89%) and with a specificity ranging from 73 (CI=68–78%) to 93% (CI=76–99%). Prostate massage led to increased Mcm5 signals compared with pre-massage samples (median 3440 (interquartile range (IQR) 2280 to 5220) vs 2360 (IQR <1800 to 4360); P=0.009), and was associated with significantly increased diagnostic sensitivity (82 vs 60%; P=0.012). Conclusions: Urinary Mcm5 detection seems to be a simple, accurate and noninvasive method for identifying patients with prostate cancer. Large-scale prospective trials are now required to evaluate this test in diagnosis and screening

    The feasibility and results of a population-based approach to evaluating prostate-specific antigen screening for prostate cancer in men with a raised familial risk

    Get PDF
    The feasibility of a population-based evaluation of screening for prostate cancer in men with a raised familial risk was investigated by studying reasons for non-participation and uptake rates according to postal recruitment and clinic contact. The levels of prostate-specific antigen (PSA) and the positive predictive values (PPV) for cancer in men referred with a raised PSA and in those biopsied were analysed. First-degree male relatives (FDRs) were identified through index cases (ICs): patients living in two regions of England and diagnosed with prostate cancer at age â©œ65 years from 1998 to 2004. First-degree relatives were eligible if they were aged 45–69 years, living in the UK and had no prior diagnosis of prostate cancer. Postal recruitment was low (45 of 1687 ICs agreed to their FDR being contacted: 2.7%) but this was partly due to ICs not having eligible FDRs. A third of ICs in clinic had eligible FDRs and 49% (192 out of 389) agreed to their FDR(s) being contacted. Of 220 eligible FDRs who initially consented, 170 (77.3%) had a new PSA test taken and 32 (14.5%) provided a previous PSA result. Among the 170 PSA tests, 10% (17) were â©Ÿ4 ng ml−1 and 13.5% (23) tests above the age-related cutoffs. In 21 men referred, five were diagnosed with prostate cancer (PPV 24%; 95% CI 8, 47). To study further the effects of screening, patients with a raised familial risk should be counselled in clinic about screening of relatives and data routinely recorded so that the effects of screening on high-risk groups can be studied

    Prognostic factors in prostate cancer

    Get PDF
    Prognostic factors in organ confined prostate cancer will reflect survival after surgical radical prostatectomy. Gleason score, tumour volume, surgical margins and Ki-67 index have the most significant prognosticators. Also the origins from the transitional zone, p53 status in cancer tissue, stage, and aneuploidy have shown prognostic significance. Progression-associated features include Gleason score, stage, and capsular invasion, but PSA is also highly significant. Progression can also be predicted with biological markers (E-cadherin, microvessel density, and aneuploidy) with high level of significance. Other prognostic features of clinical or PSA-associated progression include age, IGF-1, p27, and Ki-67. In patients who were treated with radiotherapy the survival was potentially predictable with age, race and p53, but available research on other markers is limited. The most significant published survival-associated prognosticators of prostate cancer with extension outside prostate are microvessel density and total blood PSA. However, survival can potentially be predicted by other markers like androgen receptor, and Ki-67-positive cell fraction. In advanced prostate cancer nuclear morphometry and Gleason score are the most highly significant progression-associated prognosticators. In conclusion, Gleason score, capsular invasion, blood PSA, stage, and aneuploidy are the best markers of progression in organ confined disease. Other biological markers are less important. In advanced disease Gleason score and nuclear morphometry can be used as predictors of progression. Compound prognostic factors based on combinations of single prognosticators, or on gene expression profiles (tested by DNA arrays) are promising, but clinically relevant data is still lacking

    Systematic Review of Potential Health Risks Posed by Pharmaceutical, Occupational and Consumer Exposures to Metallic and Nanoscale Aluminum, Aluminum Oxides, Aluminum Hydroxide and Its Soluble Salts

    Get PDF
    Aluminum (Al) is a ubiquitous substance encountered both naturally (as the third most abundant element) and intentionally (used in water, foods, pharmaceuticals, and vaccines); it is also present in ambient and occupational airborne particulates. Existing data underscore the importance of Al physical and chemical forms in relation to its uptake, accumulation, and systemic bioavailability. The present review represents a systematic examination of the peer-reviewed literature on the adverse health effects of Al materials published since a previous critical evaluation compiled by Krewski et al. (2007). Challenges encountered in carrying out the present review reflected the experimental use of different physical and chemical Al forms, different routes of administration, and different target organs in relation to the magnitude, frequency, and duration of exposure. Wide variations in diet can result in Al intakes that are often higher than the World Health Organization provisional tolerable weekly intake (PTWI), which is based on studies with Al citrate. Comparing daily dietary Al exposures on the basis of “total Al”assumes that gastrointestinal bioavailability for all dietary Al forms is equivalent to that for Al citrate, an approach that requires validation. Current occupational exposure limits (OELs) for identical Al substances vary as much as 15-fold. The toxicity of different Al forms depends in large measure on their physical behavior and relative solubility in water. The toxicity of soluble Al forms depends upon the delivered dose of Al+ 3 to target tissues. Trivalent Al reacts with water to produce bidentate superoxide coordination spheres [Al(O2)(H2O4)+ 2 and Al(H2O)6 + 3] that after complexation with O2‱−, generate Al superoxides [Al(O2‱)](H2O5)]+ 2. Semireduced AlO2‱ radicals deplete mitochondrial Fe and promote generation of H2O2, O2 ‱ − and OH‱. Thus, it is the Al+ 3-induced formation of oxygen radicals that accounts for the oxidative damage that leads to intrinsic apoptosis. In contrast, the toxicity of the insoluble Al oxides depends primarily on their behavior as particulates. Aluminum has been held responsible for human morbidity and mortality, but there is no consistent and convincing evidence to associate the Al found in food and drinking water at the doses and chemical forms presently consumed by people living in North America and Western Europe with increased risk for Alzheimer\u27s disease (AD). Neither is there clear evidence to show use of Al-containing underarm antiperspirants or cosmetics increases the risk of AD or breast cancer. Metallic Al, its oxides, and common Al salts have not been shown to be either genotoxic or carcinogenic. Aluminum exposures during neonatal and pediatric parenteral nutrition (PN) can impair bone mineralization and delay neurological development. Adverse effects to vaccines with Al adjuvants have occurred; however, recent controlled trials found that the immunologic response to certain vaccines with Al adjuvants was no greater, and in some cases less than, that after identical vaccination without Al adjuvants. The scientific literature on the adverse health effects of Al is extensive. Health risk assessments for Al must take into account individual co-factors (e.g., age, renal function, diet, gastric pH). Conclusions from the current review point to the need for refinement of the PTWI, reduction of Al contamination in PN solutions, justification for routine addition of Al to vaccines, and harmonization of OELs for Al substances
    • 

    corecore