4 research outputs found

    Relative contribution of matrix metalloprotease and cysteine protease activities to cytokine-stimulated articular cartilage degradation

    Get PDF
    SummaryObjectiveBoth matrix metalloprotease (MMP) activity and cathepsin K (CK) activity have been implicated in cartilage turnover. We investigated the relative contribution of MMP activity and CK activity in cartilage degradation using ex vivo and in vivo models.MethodsBovine articular cartilage explants were stimulated with oncostatin M (OSM) 10ng/ml and tumor necrosis factor-α (TNF-α) 20ng/ml in the presence or absence of the broad-spectrum MMP inhibitor GM6001 and the cysteine protease inhibitor, E64. Cartilage degradation was evaluated in the conditioned medium by glycosaminoglycans (GAG), hydroxyproline, and cross-linked C-telopeptide fragments of type II collagen (CTX-II), which were compared to immunohistochemical evaluations of proteoglycans and CTX-II. We assessed MMP expression by gelatine zymography and CK expression by immunohistochemistry. In vivo, CTX-II release was measured from CK-deficient mice.ResultsOSM and TNF-α combined induced significant (P<0.01) increase in cartilage degradation products measured by hydroxyproline and CTX-II compared to vehicle control. The cytokines potently induced MMP expression, assessed by zymography, and CK expression investigated by immunohistochemistry. Inhibition of MMP activity completely abrogated hydroxyproline and CTX-II release (P<0.01) and GAG release (P<0.05). In contrast, E64 resulted in increased CTX-II release by 100% (P<0.05) and inhibited GAG release by 30%. Up-regulation of CTX-II fragments was confirmed in vivo in CK null mice.ConclusionInhibition of MMP activity reduced both proteoglycan loss and type II collagen degradation. In contrast, inhibition of cysteine proteases resulted in an increase rather than a decrease in MMP derived fragments of collagen type II degradation, CTX-II, suggesting altered collagen metabolism

    Normal bone growth requires optimal estrogen levels: negative effects of both high and low dose estrogen on the number of growth plate chondrocytes

    No full text
    Endochondral bone formation at epiphyseal growth plate consists of the synchronized processes of chondrogenesis and cartilage ossification. Estrogen, the major female sex hormone, plays an important role in this process, particularly during the pubertal growth spurt. However, its effects on the growth plate are not completely understood. The aims of this study were to clarify the effects of estrogen on the kinetics of chondrocytes in the growth plates of 10- to 25-week-old female rabbits by studying the effects of ovariectomy or high-dose administration of estrogen on the balance between cell proliferation and death. Forty-eight Japanese white rabbits were divided into three groups: sham operated, ovariectomized, or ovariectomized with subsequent weekly injection of high dose estrogen from 10 weeks. The chondrocyte kinetics was investigated by histomorphometry and immunohistochemistry, using antibodies for caspase-3, a marker of apoptosis, and for proliferating cell nuclear antigen. Both ovariectomized and estrogen-injected rabbits showed a declination of the chondrocyte number although the latter animals indicated a more dramatic effect. Estrogen-injected rabbits showed a decrease in the cell proliferating ability together with an increase in chondrocytes undergoing apoptosis while ovariectomy mainly reduced the cell proliferating ability. Given the known importance of estrogen for bone growth, one would expect that ovariectomy and high-dose administration of estrogen would have opposite effects. However, the present study indicated that both low and high concentration had a similar effect: a decrease in the chondrocyte number compared with control, suggesting that estrogen has to be maintained within a narrow range for optimal bone growth
    corecore