8 research outputs found

    Plasma Protein Profiles Differ Between Women Diagnosed with Cervical Intraepithelial Neoplasia (CIN) 1 and 3

    Get PDF
    Early detection of precancerous cells in the cervix and their clinical management is the main purpose of cervical cancer prevention and treatment programs. Cytological findings or testing for high risk (HR)-human papillomavirus (HPV) are inadequately sensitive for use in triage of women at high risk for cervical cancer. The current study is an exploratory study to identify candidate surface-enhanced laser desorption/ionization (SELDI) time of flight (TOF) mass spectrometry (MS) protein profiles in plasma that may distinguish cervical intraepithelial neoplasia (CIN 3) from CIN 1 among women infected with HR-HPV. We evaluated the SELDI-TOF-MS plasma protein profiles of HR-HPV positive 32 women with CIN 3 (cases) and 28 women with CIN1 (controls). Case-control status was kept blinded and triplicates of each sample and quality control plasma samples were randomized and after robotic sample preparations were run on WCX2 chips. After alignment of mass/charge (m-z values), an iterative method was used to develop a classifier on a training data set that had 28 cases and 22 controls. The classifier developed was used to classify the subjects in a test data set that has six cases and six controls. The classifier separated the cases from controls in the test set with 100% sensitivity and 100% specificity suggesting the possibility of using plasma SELDI protein profiles to identify women who are likely to have CIN 3 lesions

    Phosphorylated Lim Kinases Colocalize With Ī“-Tubulin In Centrosomes During Early Stages Of Mitosis

    No full text
    LIM kinases (LIMK1 and LIMK2) are LIM domain containing serine/threonine kinases that modulate reorganization of actin cytoskeleton through inactivating phosphorylation of cofilin. The Rho family of small GTPases regulates the catalytic activity of LIMK1 and LIMK2 through activating phosphorylation by ROCK or by p21 kinase. Recent studies have suggested that LIMK1 could play a role in modulation of cellular growth by alteration of the cell cycle in breast and prostate tumor cells; however, the direct mitogenic effects of LIMK1 in these tumor cells is yet to be elucidated. Via immunofluorescence, in this study, we show that phosphorylated LIM kinases (pLIMK1/2) are colocalized with Ī³-tubulin in the centrosomes during the early mitotic phases of human breast and prostate cancer cells (MDA-MB-231 and DU145); apparent colocalization begins in the centrosomes in prophase. As shown by both bright field (MDA-MB-231) and fluorescent immunohistochemistry (MDA-MB-231 and DU145), pLIMK1/2 does not localize to centrosomes during interphase. By bright field immunohistochemistry, the largest area of the centrosome that is stained with pLIMK1/2 occurs at anaphase. In early telophase, reduced staining of pLIMK1/2 at the spindle poles and concomitant accumulation of pLIMK1/2 at the cleavage furrow begins to occur. In late telophase, loss of staining of pLIMK1/2 and of colocalization with Ī³-tubulin occurs at the poles and pLIMK1/2 became further concentrated at the junction between the two daughter cells. Co-immunoprecipitation studies indicated that Ī³-tubulin associates with phosphorylated LIMK1 and LIMK2 but not with dephosphorylated LIMK1 or LIMK2. The results suggest that activated LIMK1/2 may associate with Ī³-tubulin and play a role in mitotic spindle assembly. Ā©2007 Landes Bioscience

    Development of combination tapered fiber-optic biosensor dip probe for quantitative estimation of interleukin-6 in serum samples

    No full text
    A combination tapered fiber-optic biosensor (CTFOB) dip probe for rapid and cost-effective quantification of proteins in serum samples has been developed. This device relies on diode laser excitation and a charged-coupled device spectrometer and functions on a technique of sandwich immunoassay. As a proof of principle, this technique was applied in a quantitative estimation of interleukin IL-6. The probes detected IL-6 at picomolar levels in serum samples obtained from a patient with lupus, an autoimmune disease, and a patient with lymphoma. The estimated concentration of IL-6 in the lupus sample was 5.9 Ā± 0.6 pM, and in the lymphoma sample, it was below the detection limit. These concentrations were verified by a procedure involving bead-based xMAP technology. A similar trend in the concentrations was observed. The specificity of the CTFOB dip probes was assessed by analysis with receiver operating characteristics. This analysis suggests that the dip probes can detect 5-pM or higher concentration of IL-6 in these samples with specificities of 100%. The results provide information for guiding further studies in the utilization of these probes to quantify other analytes in body fluids with high specificity and sensitivity

    Control of prostate cell growth: BMP antagonizes androgen mitogenic activity with incorporation of MAPK signals in Smad1

    No full text
    Alterations in the signaling pathways of bone morphogenetic proteins (BMPs) and activation of the ERK/MAP kinase (MAPK) pathway by growth factors have been implicated in the development and progression of prostate cancer. Smad1 acts as a substrate for MAPKs and also performs a central role in transmitting signals from BMPs. We found that BMPs/Smad1 signaling inhibits the growth of androgen-sensitive prostate cancer cells. Upon the incorporation of ERK/MAPK signals at its linker region, Smad1 physically interacts with androgen-activated androgen receptor (AR) and suppresses its functions. BMPs induce the function of Smad1 as an AR transcriptional corepressor. We demonstrated in vivo that Smad1 signaling is low in androgen-regulated growth of prostate cancer, is activated after castration, and also is decreased in hormone-independent tumors. The activation status of ERK/MAPK parallels Smad1 in the progression of prostate cancer; thus, our findings indicate a molecular basis for the integration of signals of MAPK and Smad1 in the progression and androgen regulation of prostate cancer
    corecore