1,127 research outputs found

    Strongly Intensive Measures for Multiplicity Fluctuations

    Full text link
    The recently proposed two families of strongly intensive measures of fluctuations and correlations are studied within Hadron-String-Dynamics (HSD) transport approach to nucleus-nucleus collisions. We consider the measures ΔKπ\Delta^{K\pi} and ΣKπ\Sigma^{K\pi} for kaon and pion multiplicities in Au+Au collisions in a wide range of collision energies and centralities. These strongly intensive measures appear to cancel the participant number fluctuations. This allows to enlarge the centrality window in the analysis of event-by-event fluctuations up to at least of 10% most central collisions. We also present a comparison of the HSD results with the data of NA49 and STAR collaborations. The HSD describes ΣKπ\Sigma^{K\pi} reasonably well. However, the HSD results depend monotonously on collision energy and do not reproduce the bump-deep structure of ΔKπ\Delta^{K\pi} observed from the NA49 data in the region of the center of mass energy of nucleon pair sNN=8÷12\sqrt{s_{NN}}= 8\div 12 GeV. This fact deserves further studies. The origin of this `structure' is not connected with simple geometrical or limited acceptance effects, as these effects are taken into account in the HSD simulations

    A Cone Jet-Finding Algorithm for Heavy-Ion Collisions at LHC Energies

    Get PDF
    Standard jet finding techniques used in elementary particle collisions have not been successful in the high track density of heavy-ion collisions. This paper describes a modified cone-type jet finding algorithm developed for the complex environment of heavy-ion collisions. The primary modification to the algorithm is the evaluation and subtraction of the large background energy, arising from uncorrelated soft hadrons, in each collision. A detailed analysis of the background energy and its event-by-event fluctuations has been performed on simulated data, and a method developed to estimate the background energy inside the jet cone from the measured energy outside the cone on an event-by-event basis. The algorithm has been tested using Monte-Carlo simulations of Pb+Pb collisions at s=5.5\sqrt{s}=5.5 TeV for the ALICE detector at the LHC. The algorithm can reconstruct jets with a transverse energy of 50 GeV and above with an energy resolution of ∼30\sim30%.Comment: 13 pages, 7 figure

    Observing Quark-Gluon Plasma with Strange Hadrons

    Full text link
    We review the methods and results obtained in an analysis of the experimental heavy ion collision research program at nuclear beam energy of 160-200A GeV. We study strange, and more generally, hadronic particle production experimental data. We discuss present expectations concerning how these observables will perform at other collision energies. We also present the dynamical theory of strangeness production and apply it to show that it agrees with available experimental results. We describe strange hadron production from the baryon-poor quark-gluon phase formed at much higher reaction energies, where the abundance of strange baryons and antibaryons exceeds that of nonstrange baryons and antibaryons.Comment: 39 journal pages (155kb text), 8 postscript figures, 8 table

    Statistical hadronization phenomenology in K/Ï€K/\pi fluctuations at ultra-relativistic energies

    Full text link
    We discuss the information that can be obtained from an analysis of fluctuations in heavy ion collisions within the context of the statistical model of particle production. We then examine the recently published experimental data on ratio fluctuations, and use it to obtain constraints on the statistical properties (physically relevant ensemble, degree of chemical equilibration, scaling across energies and system sizes) and freeze-out dynamics (amount of reinteraction between chemical and thermal freeze-out) of the system.Comment: Proceedings, SQM2009. Fig. 4, the main results figure, was wrong due to editing mistake, now correcte

    How large is "large NcN_c" for Nuclear matter?

    Full text link
    We argue that a so far neglected dimensionless scale, the number of neighbors in a closely packed system, is relevant for the convergence of the large NcN_c expansion at high chemical potential. It is only when the number of colors is large w.r.t. this new scale (\sim \order{10}) that a convergent large NcN_c limit is reached. This provides an explanation as to why the large NcN_c expansion, qualitatively successful in in vacuum QCD, fails to describe high baryo-chemical potential systems, such as nuclear matter. It also means that phenomenological claims about high density matter based on large NcN_c extrapolations should be treated with caution.Comment: Proceedings of CPOD2010 conference, in Dubna. Results based on Phys.Rev.C82, 055202 (2010), http://arxiv.org/abs/1006.247

    Longitudinal Flow of Protons from 2-8 AGeV Central Au+Au Collisions

    Full text link
    Rapidity distributions of protons from central 197^{197}Au + 197^{197}Au collisions measured by the E895 Collaboration in the energy range from 2 to 8 AGeV at the Brookhaven AGS are presented. Longitudinal flow parameters derived using a thermal model including collective longitudinal expansion are extracted from these distributions. The results show an approximately linear increase in the longitudinal flow velocity, L_{L}, as a function of the logarithm of beam energy.Comment: 5 Pages, including 3 figures, 1 tabl

    Laying the groundwork at the AGS: Recent results from experiment E895

    Full text link
    The E895 Collaboration at the Brookhaven AGS has performed a systematic investigation of Au+Au collisions at 2-8 AGeV, using a large-acceptance Time Projection Chamber. In addition to extensive measurements of particle flow, spectra, two-particle interferometry, and strangeness production, we have performed novel hybrid analyses, including azimuthally-sensitive pion HBT, extraction of the six-dimensional pion phasespace density, and a first measurement of the Lambda-proton correlation function.Comment: Presented at Quark Matter 2001, 8 pages, 5 figure

    Charged Pion Production in 2 to 8 AGeV Central Au+Au Collisions

    Full text link
    Momentum spectra of charged pions over nearly full rapidity coverage from target to beam rapidity have been measured in the 0-5% most central Au+Au collisions in the beam energy range from 2 to 8 AGeV by the E895 Experiment. Using a thermal parameterization to fit the transverse mass spectra, rapidity density distributions are extracted. The observed spectra are compared with predictions from the RQMD v2.3 cascade model and also to a thermal model including longitudinal flow. The total 4Ï€\pi yields of the charged pions are used to infer an initial state entropy produced in the collisions.Comment: 13 pgs, 19 figs, accepted by Phys. Rev. C. Data tables available at http://nuclear.ucdavis.edu/~e895/published_spectra.htm
    • …
    corecore