7 research outputs found

    Polymeric Micelles for the Enhanced Deposition of Hydrophobic Drugs into Ocular Tissues, without Plasma Exposure

    Get PDF
    Commercial topical ocular formulations for hydrophobic actives rely on the use of suspensions or oil in water emulsions and neither of these formulation modalities adequately promote drug penetration into ocular tissues. Using the ocular relevant hydrophobic drug, cyclosporine A (CsA), a non-irritant ocular penetration enhancer is showcased, which may be used for the formulation of hydrophobic actives. The activity of this penetration enhancer is demonstrated in a healthy rabbit model. The Molecular Envelope Technology (MET) polymer (N-palmitoyl-N-monomethyl-N,N-dimethyl-N,N,N-trimethyl-6-O-glycolchitosan), a self-assembling, micelle-forming polymer, was used to formulate CsA into sterile filtered nanoparticulate eye drop formulations and the stability of the formulation tested. Healthy rabbits were dosed with a single dose of a MET–CsA (NM133) 0.05% formulation and ocular tissues analyzed. Optically clear NM133 formulations were prepared containing between 0.01–0.1% w/v CsA and 0.375–0.75% w/v MET polymer. NM133 0.01%, NM133 0.02% and NM133 0.05% were stable for 28 days when stored at refrigeration temperature (5–6 °C) and room temperature (16–23 °C), but there was evidence of evaporation of the formulation at 40 °C. There was no change in drug content when NM133 0.05% was stored for 387 days at 4 °C. On topical dosing to rabbits, corneal, conjunctival and scleral AUC0–24 levels were 25,780 ng.h g−1, 12,046 ng.h g−1 and 5879 ng.h g−1, respectively, with NM133 0.05%. Meanwhile, a similar dose of Restasis 0.05% yielded lower values of 4726 ng.h/g, 4813 ng.h/g and 1729 ng.h/g for the drug corneal, conjunctival and scleral levels, respectively. NM133 thus delivered up to five times more CsA to the ocular surface tissues when compared to Restasis. The MET polymer was non-irritant up to a concentration of 4% w/v. The MET polymer is a non-irritant ocular penetration enhancer that may be used to deliver hydrophobic drugs in optically clear topical ocular formulations

    Amphotericin B Polymer Nanoparticles Show Efficacy against Candida Species Biofilms

    Get PDF
    PURPOSE: Chronic infections of Candida albicans are characterised by the embedding of budding and entwined filamentous fungal cells into biofilms. The biofilms are refractory to many drugs and Candida biofilms are associated with ocular fungal infections. The objective was to test the activity of nanoparticulate amphotericin B (AmB) against Candida biofilms. METHODS: AmB was encapsulated in the Molecular Envelope Technology (MET, N-palmitoyl-N-monomethyl-N,N-dimethyl-N,N,N-trimethyl-6-O-glycolchitosan) nanoparticles and tested against Candida biofilms in vitro. Confocal laser scanning microscopy (CLSM) imaging of MET nanoparticles’ penetration into experimental biofilms was carried out and a MET-AmB eye drop formulation was tested for its stability. RESULTS: MET-AmB formulations demonstrated superior activity towards C. albicans biofilms in vitro with the EC50 being ~30 times lower than AmB alone (EC50 MET-AmB = 1.176 ”g mL−1, EC50 AmB alone = 29.09 ”g mL−1 ). A similar superior activity was found for Candida glabrata biofilms, where the EC50 was ~10× lower than AmB alone (EC50 MET-AmB = 0.0253 ”g mL−1, EC50 AmB alone = 0.289 ”g mL−1 ). CLSM imaging revealed that MET nanoparticles penetrated through the C. albicans biofilm matrix and bound to fungal cells. The activity of MET-AmB was no different from the activity of AmB alone against C. albicans cells in suspension (MET-AmB MIC90 = 0.125 ”g mL−1, AmB alone MIC90 = 0.250 ”g mL−1 ). MET-AmB eye drops were stable at room temperature for at least 28 days. CONCLUSIONS: These biofilm activity findings raise the possibility that MET-loaded nanoparti-cles may be used to tackle Candida biofilm infections, such as refractory ocular fungal infections

    Direct in vivo evidence on the mechanism by which nanoparticles facilitate the absorption of a water insoluble, P-gp substrate

    Get PDF
    Here we examine the mechanisms by which nanoparticles enable the oral absorption of water-insoluble, P-glycoprotein efflux pump (P-gp) substrates, without recourse to P-gp inhibitors. Both 200 nm paclitaxel N-(2-phenoxyacetyl)-6-O-glycolchitosan (GCPh) nanoparticles (GCPh-PTX) and a simulated Taxol formulation, facilitate drug dissolution in biorelevant media, unlike paclitaxel nanocrystals. Verapamil (40 mg kg−1) increased the oral absorption from low dose Taxol (6 or 10 mg kg−1) by 100%, whereas the oral absorption from high dose Taxol (20 mg kg−1) or low dose GCPh-PTX (6 or 10 mg kg−1) was largely unchanged by verapamil. There was virtually no absorption from control paclitaxel nanocrystals (20 mg kg−1). Imaging of ex-vivo rat ileum samples showed that fluorescently labelled GCPh nanoparticles are mucoadhesive and are taken up by ileum epithelial cells. GCPh nanoparticles were also found to open Caco-2 cell tight junctions. In conclusion, mucoadhesive, drug solubilising GCPh nanoparticles enable the oral absorption of paclitaxel via the saturation of the P-gp pump (by high local drug concentrations) and by particle uptake and tight junction opening mechanisms

    phosphorus fertilizer in the Sub-humid Savanna of

    No full text
    Soybean response to application of poultry manure an

    Unusual Enthalpy Driven Self Assembly At Room Temperature With Chitosan Amphiphiles

    No full text
    HYPOTHESIS: GCPQ (N-palmitoyl-N-monomethyl-N,N-dimethyl-N,N,N-trimethyl-6-O-glycolchitosan) is a self-assembling polymer being investigated as a pharmaceutical nano-carrier. GCPQ nanoparticles shuttle drugs across biological barriers, improving drug performance. The exact chemistry of GCPQ is varied by the relative proportion of hydrophobic (N-palmitoyl) and hydrophilic (quaternary ammonium) groups and molecular weight. We hypothesise that the thermodynamics of self-assembly is controlled by the polymer molecular weight and hydrophobicity. METHODS: The thermodynamics of self-assembly was investigated using isothermal calorimetry. FINDINGS: GCPQs (Mw = 8 - 15 kDa) formed micellar aggregates at critical micellar concentrations of 1 - 2.4 ÎŒM at 25 °C and micellisation was unusually enthalpy driven. There was a positive correlation between ΔHmic and Q: ΔHmic = 3.8 Q - 159 (r2 = 0.93) and a negative correlation between ΔHmic and molecular weight (Mw): ΔHmic = -13.5 Mw - 26.3 (r2 = 0.99). These findings provide insights into the positive drivers of stable self-assemblies, namely hydrophobicity and molecular weight, as both hydrophobicity and molecular weight are associated with an increased enthalpy contribution to micellisation
    corecore