150 research outputs found
Evolution of bHLH transcription factors that control cell differentiation in plants
EThOS - Electronic Theses Online ServiceGBUnited Kingdo
Slow Logarithmic Decay of Magnetization in the Zero Temperature Dynamics of an Ising Spin Chain: Analogy to Granular Compaction
We study the zero temperature coarsening dynamics in an Ising chain in
presence of a dynamically induced field that favors locally the `-' phase
compared to the `+' phase. At late times, while the `+' domains still coarsen
as , the `-' domains coarsen slightly faster as . As
a result, at late times, the magnetization decays slowly as, . We establish this behavior both analytically within an
independent interval approximation (IIA) and numerically. In the zero volume
fraction limit of the `+' phase, we argue that the IIA becomes asymptotically
exact. Our model can be alternately viewed as a simple Ising model for granular
compaction. At late times in our model, the system decays into a fully compact
state (where all spins are `-') in a slow logarithmic manner , a fact that has been observed in recent experiments on granular systems.Comment: 4 pages Revtex, 3 eps figures, supersedes cond-mat/000221
The generalized contact process with n absorbing states
We investigate the critical properties of a one dimensional stochastic
lattice model with n (permutation symmetric) absorbing states. We analyze the
cases with by means of the non-hermitian density matrix
renormalization group. For n=1 and n=2 we find that the model is respectively
in the directed percolation and parity conserving universality class,
consistent with previous studies. For n=3 and n=4, the model is in the active
phase in the whole parameter space and the critical point is shifted to the
limit of one infinite reaction rate. We show that in this limit the dynamics of
the model can be mapped onto that of a zero temperature n-state Potts model. On
the basis of our numerical and analytical results we conjecture that the model
is in the same universality class for all with exponents , and . These exponents
coincide with those of the multispecies (bosonic) branching annihilating random
walks. For n=3 we also show that, upon breaking the symmetry to a lower one
(), one gets a transition either in the directed percolation, or in the
parity conserving class, depending on the choice of parameters.Comment: 10 pages, RevTeX, and 10 PostScript figures include
第28号
Background Perioperative fluid strategies influence clinical outcomes following major surgery. Many intravenous fluid preparations are based on simple solutions, such as normal saline, that feature an electrolyte composition that differs from that of physiological plasma. Buffered fluids have a theoretical advantage of containing a substrate that acts to maintain the body’s acid-base status - typically a bicarbonate or a bicarbonate precursor such as maleate, gluconate, lactate, or acetate. Buffered fluids also provide additional electrolytes, including potassium, magnesium, and calcium, more closely matching the electrolyte balance of plasma. The putative benefits of buffered fluids have been compared with those of non-buffered fluids in the context of clinical studies conducted during the perioperative period. This review was published in 2012, and was updated in 2017. Objectives To review effects of perioperative intravenous administration of buffered versus non-buffered fluids for plasma volume expansion or maintenance, or both, on clinical outcomes in adults undergoing all types of surgery. Search methods We electronically searched the Clinicaltrials.gov major trials registry, the Cochrane Central Register of Controlled Trials (CENTRAL; 2016, Issue 6) in the Cochrane Library, MEDLINE (1966 to June 2016), Embase (1980 to June 2016), and the Cumulative Index to Nursing and Allied Health Literature (CINAHL; 1982 to June 2016). We handsearched conference abstracts and, when possible, contacted leaders in the field. We reran the search in May 2017. We added one potential new study of interest to the list of ‘Studies awaiting classification' and will incorporate this trial into formal review findings when we prepare the review update. Selection criteria Only randomized controlled trials that compared buffered versus non-buffered intravenous fluids for surgical patients were eligible for inclusion. We excluded other forms of comparison such as crystalloids versus colloids and colloids versus different colloids. Data collection and analysis Two review authors screened references for eligibility, extracted data, and assessed risks of bias. We resolved disagreements by discussion and consensus, in collaboration with a third review author. We contacted trial authors to request additional information when appropriate. We presented pooled estimates for dichotomous outcomes as odds ratios (ORs) and for continuous outcomes as mean differences (MDs), with 95% confidence intervals (CIs). We analysed data via Review Manager 5.3 using fixed-effect models, and when heterogeneity was high (I² > 40%), we used random-effects models. Main results This review includes, in total, 19 publications of 18 randomized controlled trials with a total of 1096 participants. We incorporated five of those 19 studies (330 participants) after the June 2016 update. Outcome measures in the included studies were thematically similar, covering perioperative electrolyte status, renal function, and acid-base status; however, we found significant clinical and statistical heterogeneity among the included studies. We identified variable protocols for fluid administration and total volumes of fluid administered to patients intraoperatively. Trial authors variably reported outcome data at disparate time points and with heterogeneous patient groups. Consequently, many outcome measures are reported in small group sizes, reducing overall confidence in effect size, despite relatively low inherent bias in the included studies. Several studies reported orphan outcome measures. We did not include in the results of this review one large, ongoing study of saline versus Ringer's solution. We found insufficient evidence on effects of fluid therapies on mortality and postoperative organ dysfunction (defined as renal insufficiency leading to renal replacement therapy); confidence intervals were wide and included both clinically relevant benefit and harm: mortality (Peto OR 1.85, 95% CI 0.37 to 9.33; I² = 0%; 3 trials, 6 deaths, 276 participants; low-quality evidence); renal insufficiency (OR 0.82, 95% CI 0.34 to 1.98; I² = 0%; 4 trials, 22 events, 276 participants; low-quality evidence). We noted several metabolic differences, including a difference in postoperative pH measured at end of surgery of 0.05 units - lower in the non-buffered fluid group (12 studies with a total of 720 participants; 95% CI 0.04 to 0.07; I² = 61%). However, this difference was not maintained on postoperative day one. We rated the quality of evidence for this outcome as moderate. We observed a higher postoperative serum chloride level immediately after operation, with use of non-buffered fluids reported in 10 studies with a total of 530 participants (MD 6.77 mmol/L, 95% CI 3.38 to 10.17), and this difference persisted until day one postoperatively (five studies with a total of 258 participants; MD 8.48 mmol/L, 95% CI 1.08 to 15.88). We rated the quality of evidence for this outcome as moderate. Authors' conclusions Current evidence is insufficient to show effects of perioperative administration of buffered versus non-buffered crystalloid fluids on mortality and organ system function in adult patients following surgery. Benefits of buffered fluid were measurable in biochemical terms, particularly a significant reduction in postoperative hyperchloraemia and metabolic acidosis. Small effect sizes for biochemical outcomes and lack of correlated clinical follow-up data mean that robust conclusions on major morbidity and mortality associated with buffered versus non-buffered perioperative fluid choices are still lacking. Larger studies are needed to assess these relevant clinical outcomes
On universality in aging ferromagnets
This work is a contribution to the study of universality in
out-of-equilibrium lattice models undergoing a second-order phase transition at
equilibrium. The experimental protocol that we have chosen is the following:
the system is prepared in its high-temperature phase and then quenched at the
critical temperature . We investigated by mean of Monte Carlo simulations
two quantities that are believed to take universal values: the exponent
obtained from the decay of autocorrelation functions and the
asymptotic value of the fluctuation-dissipation ratio . This
protocol was applied to the Ising model, the 3-state clock model and the
4-state Potts model on square, triangular and honeycomb lattices and to the
Ashkin-Teller model at the point belonging at equilibrium to the 3-state Potts
model universality class and to a multispin Ising model and the Baxter-Wu model
both belonging to the 4-state Potts model universality class at equilibrium.Comment: 17 page
Slow Relaxation in a Constrained Ising Spin Chain: a Toy Model for Granular Compaction
We present detailed analytical studies on the zero temperature coarsening
dynamics in an Ising spin chain in presence of a dynamically induced field that
favors locally the `-' phase compared to the `+' phase. We show that the
presence of such a local kinetic bias drives the system into a late time state
with average magnetization m=-1. However the magnetization relaxes into this
final value extremely slowly in an inverse logarithmic fashion. We further map
this spin model exactly onto a simple lattice model of granular compaction that
includes the minimal microscopic moves needed for compaction. This toy model
then predicts analytically an inverse logarithmic law for the growth of density
of granular particles, as seen in recent experiments and thereby provides a new
mechanism for the inverse logarithmic relaxation. Our analysis utilizes an
independent interval approximation for the particle and the hole clusters and
is argued to be exact at late times (supported also by numerical simulations).Comment: 9 pages RevTeX, 1 figures (.eps
Quasi-stationary regime of a branching random walk in presence of an absorbing wall
A branching random walk in presence of an absorbing wall moving at a constant
velocity undergoes a phase transition as the velocity of the wall
varies. Below the critical velocity , the population has a non-zero
survival probability and when the population survives its size grows
exponentially. We investigate the histories of the population conditioned on
having a single survivor at some final time . We study the quasi-stationary
regime for when is large. To do so, one can construct a modified
stochastic process which is equivalent to the original process conditioned on
having a single survivor at final time . We then use this construction to
show that the properties of the quasi-stationary regime are universal when
. We also solve exactly a simple version of the problem, the
exponential model, for which the study of the quasi-stationary regime can be
reduced to the analysis of a single one-dimensional map.Comment: 2 figures, minor corrections, one reference adde
Patchiness and Demographic Noise in Three Ecological Examples
Understanding the causes and effects of spatial aggregation is one of the
most fundamental problems in ecology. Aggregation is an emergent phenomenon
arising from the interactions between the individuals of the population, able
to sense only -at most- local densities of their cohorts. Thus, taking into
account the individual-level interactions and fluctuations is essential to
reach a correct description of the population. Classic deterministic equations
are suitable to describe some aspects of the population, but leave out features
related to the stochasticity inherent to the discreteness of the individuals.
Stochastic equations for the population do account for these
fluctuation-generated effects by means of demographic noise terms but, owing to
their complexity, they can be difficult (or, at times, impossible) to deal
with. Even when they can be written in a simple form, they are still difficult
to numerically integrate due to the presence of the "square-root" intrinsic
noise. In this paper, we discuss a simple way to add the effect of demographic
stochasticity to three classic, deterministic ecological examples where
aggregation plays an important role. We study the resulting equations using a
recently-introduced integration scheme especially devised to integrate
numerically stochastic equations with demographic noise. Aimed at scrutinizing
the ability of these stochastic examples to show aggregation, we find that the
three systems not only show patchy configurations, but also undergo a phase
transition belonging to the directed percolation universality class.Comment: 20 pages, 5 figures. To appear in J. Stat. Phy
Outbreak size distributions in epidemics with multiple stages
Multiple-type branching processes that model the spread of infectious
diseases are investigated. In these stochastic processes, the disease goes
through multiple stages before it eventually disappears. We mostly focus on the
critical multistage Susceptible-Infected-Recovered (SIR) infection process. In
the infinite population limit, we compute the outbreak size distributions and
show that asymptotic results apply to more general multiple-type critical
branching processes. Finally using heuristic arguments and simulations we
establish scaling laws for a multistage SIR model in a finite population.Comment: 7 pages, 2 figures; added references, final versio
- …