84 research outputs found
Cell-Length-Dependent Microtubule Accumulation during Polarization
SummaryBackgroundBreaking cell symmetry, known as polarization, requires dynamic reorganization of microtubules (MTs) and is essential to many cellular processes, including axon formation in neurons. A critical step in polarization is believed to be the āselective stabilizationā of MTs, which hypothesizes a spatial and/or temporal shift toward net MT assembly in a preferred direction of growth.ResultsWe now find that a simpler ālength-dependentā model, in which MT assembly parameters are spatially and temporally constant, predicts MT accumulation in the direction of growth because of longer mean first passage times in the longer direction. We experimentally tested both models by tracking MT assembly dynamics in polarizing embryonic chick forebrain neurons, and we confirmed that assembly is spatially and temporally constant during axon formation.ConclusionCell polarization occurs most simply through cell-length-dependent accumulation of MTs without MT stabilization or capture. In this way, F-actin-mediated cell shape and size changes can be read out by dynamic MTs undergoing simple dynamic instability to ultimately break cell symmetry
Optical Control of Microtubule Dynamics in Time and Space
Small molecule inhibitors of microtubule dynamics are widely used as cell biology research tools and clinically as cancer chemotherapeutics. By slight modification to the chemical structure of a known microtubule inhibitor, combretastatin A-4, Borowiak etĀ al. develop a photoswitchable derivative that can be turned āonā and āoffā with low-intensity light to spatially and temporally control microtubule dynamics
Regulation of the MEX-5 Gradient by a Spatially Segregated Kinase/Phosphatase Cycle
SummaryProtein concentration gradients encode spatial information across cells and tissues and often depend on spatially localized protein synthesis. Here, we report that a different mechanism underlies the MEX-5 gradient. MEX-5 is an RNA-binding protein that becomes distributed in a cytoplasmic gradient alongĀ the anterior-to-posterior axis of the one-cell C.Ā elegans embryo. We demonstrate that the MEX-5 gradient is a direct consequence of an underlying gradient in MEX-5 diffusivity. The MEX-5 diffusion gradient arises when the PAR-1 kinase stimulates the release of MEX-5 from slow-diffusive, RNA-containing complexes in the posterior cytoplasm. PAR-1 directly phosphorylates MEX-5 and is antagonized by the spatially uniform phosphatase PP2A. Mathematical modeling and inĀ vivo observations demonstrate that spatially segregated phosphorylation and dephosphorylation reactions are sufficient to generate stable protein concentration gradients in the cytoplasm. The principles demonstrated here apply to any spatially segregated modification cycle that affects protein diffusion and do not require protein synthesis or degradation
Kinesin-8 molecular motors: putting the brakes on chromosome oscillations
Recent studies suggest that the human Kinesin-8 molecular motor Kif18A has a role in chromosome congression. Specifically, these studies find that Kif18A promotes chromosome congression by attenuating chromosome oscillation magnitudes. Together with recent modeling work, in vitro studies, and the analysis of in vivo yeast data, these reports reveal how Kinesin-8 molecular motors might control chromosome oscillation amplitudes by spatially regulating the dynamic instability of microtubule plus-ends within the mitotic spindle
Rapid microtubule self-assembly kinetics
SUMMARY Microtubule assembly is vital for many fundamental cellular processes. Current models for microtubule assembly kinetics assume that the subunit dissociation rate from a microtubule tip is independent of free subunit concentration. Total-Internal-Reflection-Fluorescence (TIRF) microscopy experiments and data from a laser tweezers assay that measures in vitro microtubule assembly with nanometer resolution, provides evidence that the subunit dissociation rate from a microtubule tip increases as the free subunit concentration increases. These data are consistent with a two-dimensional model for microtubule assembly, and are explained by a shift in microtubule tip structure from a relatively blunt shape at low free concentrations to relatively tapered at high free concentrations. We find that because both the association and the dissociation rates increase at higher free subunit concentrations, the kinetics of microtubule assembly are an order-ofmagnitude higher than currently estimated in the literature
Integrin-mediated traction force enhances paxillin molecular associations and adhesion dynamics that increase the invasiveness of tumor cells into a three-dimensional extracellular matrix.
Metastasis requires tumor cells to navigate through a stiff stroma and squeeze through confined microenvironments. Whether tumors exploit unique biophysical properties to metastasize remains unclear. Data show that invading mammary tumor cells, when cultured in a stiffened three-dimensional extracellular matrix that recapitulates the primary tumor stroma, adopt a basal-like phenotype. Metastatic tumor cells and basal-like tumor cells exert higher integrin-mediated traction forces at the bulk and molecular levels, consistent with a motor-clutch model in which motors and clutches are both increased. Basal-like nonmalignant mammary epithelial cells also display an altered integrin adhesion molecular organization at the nanoscale and recruit a suite of paxillin-associated proteins implicated in invasion and metastasis. Phosphorylation of paxillin by Src family kinases, which regulates adhesion turnover, is similarly enhanced in the metastatic and basal-like tumor cells, fostered by a stiff matrix, and critical for tumor cell invasion in our assays. Bioinformatics reveals an unappreciated relationship between Src kinases, paxillin, and survival of breast cancer patients. Thus adoption of the basal-like adhesion phenotype may favor the recruitment of molecules that facilitate tumor metastasis to integrin-based adhesions. Analysis of the physical properties of tumor cells and integrin adhesion composition in biopsies may be predictive of patient outcome
The microtubule-based motor Kar3 and plus endābinding protein Bim1 provide structural support for the anaphase spindle
In budding yeast, the mitotic spindle is comprised of 32 kinetochore microtubules (kMTs) and ā¼8 interpolar MTs (ipMTs). Upon anaphase onset, kMTs shorten to the pole, whereas ipMTs increase in length. Overlapping MTs are responsible for the maintenance of spindle integrity during anaphase. To dissect the requirements for anaphase spindle stability, we introduced a conditionally functional dicentric chromosome into yeast. When centromeres from the same sister chromatid attach to opposite poles, anaphase spindle elongation is delayed and a DNA breakage-fusion-bridge cycle ensues that is dependent on DNA repair proteins. We find that cell survival after dicentric chromosome activation requires the MT-binding proteins Kar3p, Bim1p, and Ase1p. In their absence, anaphase spindles are prone to collapse and buckle in the presence of a dicentric chromosome. Our analysis reveals the importance of Bim1p in maintaining a stable ipMT overlap zone by promoting polymerization of ipMTs during anaphase, whereas Kar3p contributes to spindle stability by cross-linking spindle MTs
Erratum to: Model Convolution: A Computational Approach to Digital Image Interpretation
Digital fluorescence microscopy is commonly used to track individual proteins and their dynamics in living cells. However, extracting molecule-specific information from fluorescence images is often limited by the noise and blur intrinsic to the cell and the imaging system. Here we discuss a method called āmodel-convolution,ā which uses experimentally measured noise and blur to simulate the process of imaging fluorescent proteins whose spatial distribution cannot be resolved. We then compare model-convolution to the more standard approach of experimental deconvolution. In some circumstances, standard experimental deconvolution approaches fail to yield the correct underlying fluorophore distribution. In these situations, model-convolution removes the uncertainty associated with deconvolution and therefore allows direct statistical comparison of experimental and theoretical data. Thus, if there are structural constraints on molecular organization, the model-convolution method better utilizes information gathered via fluorescence microscopy, and naturally integrates experiment and theory
Chromosome Congression by Kinesin-5 Motor-Mediated Disassembly of Longer Kinetochore Microtubules
During mitosis, sister chromatids congress to the spindle equator and are subsequently segregated via attachment to dynamic kinetochore microtubule (kMT) plus-ends. A major question is how kMT plus-end assembly is spatially regulated to achieve chromosome congression. Here we find in budding yeast that the widely-conserved kinesin-5 sliding motor proteins, Cin8p and Kip1p, mediate chromosome congression by suppressing kMT plus-end assembly of longer kMTs. Of the two, Cin8p is the major effector and its activity requires a functional motor domain. In contrast, the depolymerizing kinesin-8 motor Kip3p plays a minor role in spatial regulation of yeast kMT assembly. Our analysis identified a model where kinesin-5 motors bind to kMTs, move to kMT plus ends, and upon arrival at a growing plus-end promote net kMT plus-end disassembly. In conclusion, we find that length-dependent control of net kMT assembly by kinesin-5 motors yields a simple and stable self-organizing mechanism for chromosome congression
- ā¦