55 research outputs found

    Dynamic clusters (Dynamic Location of Phone Call Clusters)

    Get PDF
    When mobile handsets are making a call, a measurement report is sent to the serving base station periodically which includes the signal strengths to the base station and the next six strongest signals of the surrounding base stations. Motorola asked the Study Group if it was possible to say whether we could use this information to infer if phone calls occur in clusters and if it was possible to determine the locations, size and other features of these clusters. The Study Group found clusters in 'signal space,' that is, handsets reporting similar signal strengths with the same base stations and explored methods of locating these clusters geographically

    Spot-on: Safe Fuel/Air Compression

    Get PDF
    The emission of fuel vapors into the atmosphere from underground storage tanks at filling stations is a common occurrence in many parts the world. The conditions of the vapor in the tanks vary significantly over a 24 hour period such that evaporation and excess air ingestion during the refueling process can cause tank over pressurization and subsequent emissions. At other times during a 24 hour cycle, pressures can fall below atmospheric pressure. The state of California has recognized this emissions problem and has enacted regulations to address it. Due to these low-emission environmental requirements in California, solutions must be implemented that do not entail release of these vapors into the atmosphere. One solution requires that the vapors fill a balloon during the appropriate times. However, the size of the balloon at typical inflation rates requires a significant amount of physical space (approximately 1000-2000 liters), which may not necessarily be available at filling stations in urban areas. Veeder-Root has a patent pending for a system to compress the vapors that are released to a 10:1 ratio, store this compressed vapor in a small storage tank, and then return the vapors to the original underground fuel tank when the conditions are thermodynamically appropriate (see Figure 1 for the schematic representation of this system). The limitation of the compressor, however, is that the compression phase must take place below the ignition temperature of the vapor. For a 10:1 compression ratio, however, the adiabatic temperature rise of a vapor would be above the ignition temperature. Mathematical modeling is necessary here to estimate the performance of the compressor, and to suggest paths in design for improvement. This report starts with a mathematical formulation of an ideal compressor, and uses the anticipated geometry of the compressor to state a simplified set of partial differential equations. The adiabatic case is then considered, assuming that the temporary storage tank is kept at a constant temperature. Next, the heat transfer from the compression chamber through the compressor walls is incorporated into the model. Finally, we consider the case near the valve wall, which is subject to the maximum temperature rise over the estimated 10,000 cycles that will be necessary for the process to occur. We find that for adiabatic conditions, there is a hot spot close to the wall where the vapor temperature can exceed the wall temperature. Lastly, we discuss the implications of our analysis, and its limitations

    Cryptographic techniques used to provide integrity of digital content in long-term storage

    Get PDF
    The main objective of the project was to obtain advanced mathematical methods to guarantee the verification that a required level of data integrity is maintained in long-term storage. The secondary objective was to provide methods for the evaluation of data loss and recovery. Additionally, we have provided the following initial constraints for the problem: a limitation of additional storage space, a minimal threshold for desired level of data integrity and a defined probability of a single-bit corruption. With regard to the main objective, the study group focused on the exploration methods based on hash values. It has been indicated that in the case of tight constraints, suggested by PWPW, it is not possible to provide any method based only on the hash values. This observation stems from the fact that the high probability of bit corruption leads to unacceptably large number of broken hashes, which in turn stands in contradiction with the limitation for additional storage space. However, having loosened the initial constraints to some extent, the study group has proposed two methods that use only the hash values. The first method, based on a simple scheme of data subdivision in disjoint subsets, has been provided as a benchmark for other methods discussed in this report. The second method ("hypercube" method), introduced as a type of the wider class of clever-subdivision methods, is built on the concept of rewriting data-stream into a n-dimensional hypercube and calculating hash values for some particular (overlapping) sections of the cube. We have obtained interesting results by combining hash value methods with error-correction techniques. The proposed framework, based on the BCH codes, appears to have promising properties, hence further research in this field is strongly recommended. As a part of the report we have also presented features of secret sharing methods for the benefit of novel distributed data-storage scenarios. We have provided an overview of some interesting aspects of secret sharing techniques and several examples of possible applications

    Acid Polishing of Lead Crystal Glass

    Get PDF
    The industrial partner manufactures high quality lead crystal glassware. The cutting of decorative features in the glass damages the surface and the cuts are optically opaque; to restore transparency, the glass is polished in a solution of hydrofluoric (HF) and sulphuric acid (H2 SO4 .) The polishing process comprises three stages: 1. immersion in a polishing tank containing acid; 2. rinsing in a tank containing water; and 3. settlement of the solid reaction products in a settlement tank. The manufacturer hopes to optimise its polishing process to • minimise the health/environmental impact of the process; • maximise throughput; • maintain the sharpness of the cut edges while still polishing to an acceptable level of transparency. The study group was asked to focus on modelling three aspects of the process: • the chemical reactions involved in the etching at the glass-acid solution interface; • the removal of reaction products in the settlement tank; • flow within the polishing tank

    Levitation of a cylinder by a thin viscous film

    Get PDF
    When a horizontal cylinder is placed on a vertically moving belt coated with a thin layer of viscous fluid, experiments reveal that, at a specific belt velocity, the cylinder can be levitated at a fixed height while rotating around its own axis at an a priori unknown rate. We develop and solve a model for this experiment, using a combination of asymptotic analysis and direct numerical simulation. We obtain a relationship between belt speed and cylinder rotation rate which we successfully compare with experimental results

    Mathematical techniques for the protection of patient's privacy in medical databases

    Get PDF
    In modern society, keeping the balance between privacy and public access to information is becoming a widespread problem more and more often. Valid data is crucial for many kinds of research, but the public good should not be achieved at the expense of individuals. While creating a central database of patients, the CSIOZ wishes to provide statistical information for selected institutions. However, there are some plans to extend the access by providing the statistics to researchers or even to citizens. This might pose a significant risk of disclosure of some private, sensitive information about individuals. This report proposes some methods to prevent data leaks. One category of suggestions is based on the idea of modifying statistics, so that they would maintain importance for statisticians and at the same time guarantee the protection of patient's privacy. Another group of proposed mechanisms, though sometimes difficult to implement, enables one to obtain precise statistics, while restricting such queries which might reveal sensitive information

    Freeze protection in gasholders

    Get PDF
    In cold weather, the water seals of gasholders need protection from freezing to avoid compromising the seal. These holders have a large reservoir of "tank water" at the base which is below ground. At present freeze-protection is achieved by external heating of the seal water which is in a slotted channel called a cup. Electrical heating or circulation of heated tank water to the cup are examples of systems presently used. The tank water has a large thermal capacity and National Grid wishes to investigate whether circulation of the tank water without external heating could provide sufficient energy input to avoid freezing. Only tanks in which the tank water is below ground are investigated in the report. The soil temperature under the reservoir at depth of 10m and lower is almost constant

    Models and measures to evaluate the effectiveness of funds utilization for scientific research and development of advanced technologies

    Get PDF
    The purpose of this report was to construct some alternative methods to estimate the effectiveness of investments in scientific research and development of advanced technologies, especially their long-term effects. The Study Group decided to focus on the sub-problem of finding the relation between the spending on science and the quality of science itself. As a result, we have developed two independent methodologies. The most promising one is based on the theory of time-delay systems, which allows capturing effects of the time-lag between the use of funds and the results related to scientific work. Moreover, the methodology gives an opportunity to seek the optimal spending scenario that would fulfill some prescribed constraints (e.g. it would minimize costs and at the same time remain above a desired level of quality of science). The second methodology is premised on Stochastic Frontier Analysis and it can be applied to determine the form of relation between the amount of financing and the results of scientific work. It offers considerable advantages for analyses of several forms of relation at once (production functions) and for a suitable choice of the best one. Both methods are promising, however, additional work is necessary to apply them successfully to some real-life problems

    Transport and Reaction Processes in Soil

    Get PDF
    In order to register agrochemicals in Europe it is necessary to have a detailed understanding of the processes in the environment that break down agrochemicals. The existing framework for environmental assessment includes a consideration of soil water movement and microbial breakdown of products in soil and these processes are relatively understood and represented in models. However the breakdown of agrochemicals by the action of light incident on the soil surface by a process termed photolysis is not so well represented in models of environmental fate. The problem brought by Syngenta (one of the worlds leading agrochemical companies) to the workshop was how to include the effects of light degradation of chemicals into predictive models of environmental fate. Photolysis is known to occur in a very thin layer at the surface of soil. The workshop was asked to consider how the very rough nature of the upper surface of a ploughed field might affect the degradation of chemicals by sunlight. The discussions were directed down two avenues: - firstly to determine how the very small distances over which photolysis occurs might be adequately incorporated into models of transport in soils and, - secondly to consider how the rough surface might modify the illumination of the surface and hence alter degradation. The rate of degradation by photolysis is measured in the laboratory by illuminating a thin, typically about 1 or 2 mm, layer of soil with very strong xenon lamps. The amount of chemical is measured at various intervals and is fitted to a first-order process. Field experiments where the chemical is sprayed on a bare field show evidence of photolysis indicated by biphasic degradation patterns and the presence of breakdown products only formed by photolysis. This report addresses methods for mathematically modelling the action of photolysis on particular relevant chemical species. We start with a general discussion of mechanisms that transport chemicals within soil §2. There is an existing computational model exploited by Syngenta for such modelling and we discuss how this performs and the predictions that can be derived using it §3. The particular mechanism of photolysis is then considered. One aspect of this mechanism that is investigated is how the roughness of the surface of the soil could be adequately incorporated into the modelling. Some results relating to this are presented §4.2. Some of the original experimental data used to derive aspects of the model of photolysis are revisited and a simple model of the process presented and shown to fit the data very well §5. By considering photolysis with a constant diffusion coefficient various analytical results are derived and general behaviour of the system outlined. This simple model is then applied to real field-based data and shown to give very good fit when simply extended to account for the moisture variations by utilising moisture dependent diffusion coefficients derived from the existing computational model §5.3. Some consequences of the simple model are then discussed §6
    • …
    corecore