378 research outputs found

    Mental Health and Acculturation in Korean American Caregivers

    Get PDF
    No abstract available

    Embryonic stem cell-derived extracellular vesicle-mimetic nanovesicles rescue erectile function by enhancing penile neurovascular regeneration in the streptozotocin-induced diabetic mouse

    Get PDF
    Extracellular vesicles (EVs) have attracted particular interest in various fields of biology and medicine. However, one of the major hurdles in the clinical application of EV-based therapy is their low production yield. We recently developed cell-derived EV-mimetic nanovesicles (NVs) by extruding cells serially through filters with diminishing pore sizes (10, 5, and 1 mu m). Here, we demonstrate in diabetic mice that embryonic stem cell (ESC)-derived EV-mimetic NVs (ESC-NVs) completely restore erectile function (similar to 96% of control values) through enhanced penile angiogenesis and neural regeneration in vivo, whereas ESC partially restores erectile function (similar to 77% of control values). ESC-NVs promoted tube formation in primary cultured mouse cavernous endothelial cells and pericytes under high-glucose condition in vitro; and accelerated microvascular and neurite sprouting from aortic ring and major pelvic ganglion under high-glucose condition ex vivo, respectively. ESC-NVs enhanced the expression of angiogenic and neurotrophic factors (hepatocyte growth factor, angiopoietin-1, nerve growth factor, and neurotrophin-3), and activated cell survival and proliferative factors (Akt and ERK). Therefore, it will be a better strategy to use ESC-NVs than ESCs in patients with erectile dysfunction refractory to pharmacotherapy, although it remains to be solved for future clinical application of ESC.11Ysciescopu

    Rescaling of metal oxide nanocrystals for energy storage having high capacitance and energy density with robust cycle life

    Get PDF
    Nanocrystals are promising structures, but they are too large for achieving maximum energy storage performance. We show that rescaling 3-nm particles through lithiation followed by delithiation leads to high-performance energy storage by realizing high capacitance close to the theoretical capacitance available via ion-to-atom redox reactions. Reactive force-field (ReaxFF) molecular dynamics simulations support the conclusion that Li atoms react with nickel oxide nanocrystals (NiO-n) to form lithiated core–shell structures (Ni:Li_2O), whereas subsequent delithiation causes Ni:Li_2O to form atomic clusters of NiO-a. This is consistent with in situ X-ray photoelectron and optical spectroscopy results showing that Ni^(2+) of the nanocrystal changes during lithiation–delithiation through Ni^0 and back to Ni^(2+). These processes are also demonstrated to provide a generic route to rescale another metal oxide. Furthermore, assembling NiO-a into the positive electrode of an asymmetric device enables extraction of full capacitance for a counter negative electrode, giving high energy density in addition to robust capacitance retention over 100,000 cycles

    P-Selectin and P-Selectin Glycoprotein Ligand 1 Are Major Determinants for Th1 Cell Recruitment to Nonlymphoid Effector Sites in the Intestinal Lamina Propria

    Get PDF
    The recruitment of activated T cell subsets to sites of effector immune responses is mediated by homing receptors induced upon activation in secondary lymphoid tissue. Using an adoptive transfer model, the intestinal recruitment of CD4+ T cells activated with intraperitoneal antigen in complete Freund's adjuvant was examined. The data demonstrate that activated CD4+ T cells recruited to intestinal Peyer's patches (PP) and lamina propria (LP) up-regulate functional P-selectin glycoprotein ligand 1 (PSGL-1). Blockade of IL-12 inhibited functional PSGL-1 expression and reduced PP and LP CD4+ T cell recruitment by >40%. P-Selectin blockade reduced LP recruitment of activated cells by 56% without affecting PP recruitment. Studies of mice examined 3 d after adoptive transfer of differentiated T cell subsets revealed that Th1 but not Th2 cells were recruited to small intestine PP and LP. Mucosal addressin cell adhesion molecule blockade reduced Th1 recruitment to PP by 90% and to LP by >72%, whereas P-selectin blockade reduced Th1 recruitment to PP by 18% and Th1 recruitment to LP by 84%. These data suggest that IL-12–induced functional PSGL-1 expression is a major determinant for the recruitment of Th1 effector cells to noninflamed as well as inflamed intestine

    Induction chemotherapy in head and neck squamous cell carcinoma of the paranasal sinus and nasal cavity: A role in organ preservation

    Get PDF
    Background/Aims: The role of induction chemotherapy (IC) for eyeball preservation has not been established in head and neck squamous cell carcinoma (HNSCC) of the paranasal sinus and nasal cavity (PNSNC). Periorbital involvement frequently leads to eyeball exenteration with a margin of safety. We evaluated the treatment outcomes, including survival and eyeball preservation, of patients who received IC for HNSCC of the PNSNC. Methods: We reviewed 21 patients diagnosed with HNSCC of the PNSNC who were treated with IC. We analyzed response, eyeball preservation rate, and overall survival. Results: Tumors were located in the paranasal sinus (n = 14) or nasal cavity (n = 7). Most patients had stage T4a (n = 10) or T4b (n = 7) disease. More than half of the patients received a chemotherapy regimen of docetaxel, fluorouracil, and cisplatin (n = 11). Thirteen patients (61.9%) achieved a partial response after IC and 15 patients (71.4%) achieved T down-staging. Among 17 patients with stage T4 disease, which confers a high risk of orbital exenteration, 14 (82.4%) achieved preservation of the involved eye. The 3-year overall survival (OS) rate of patients who achieved a partial response to IC was 84.6%. The 3-year OS rate of patients with stable disease or disease progression after IC was 25.0% (p = 0.038). Conclusions: IC could be considered for down-staging patients with advanced T-stage disease. It could also be a reasonable option for eyeball preservation in locally advanced HNSCC of the PNSNC.

    Long-term effect of stereotactic body radiation therapy for primary hepatocellular carcinoma ineligible for local ablation therapy or surgical resection. Stereotactic radiotherapy for liver cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We evaluated the long-term effect of stereotactic body radiation therapy (SBRT) for primary small hepatocellular carcinoma (HCC) ineligible for local therapy or surgery.</p> <p>Methods</p> <p>Forty-two HCC patients with tumors ≤ 100 cc and ineligible for local ablation therapy or surgical resection were treated with SBRT: 30-39 Gy with a prescription isodose range of 70-85% (median 80%) was delivered daily in three fractions. Median tumor volume was 15.4 cc (3.0-81.8) and median follow-up duration 28.7 months (8.4-49.1).</p> <p>Results</p> <p>Complete response (CR) for the in-field lesion was initially achieved in 59.6% and partial response (PR) in 26.2% of patients. Hepatic out-of-field progression occurred in 18 patients (42.9%) and distant metastasis developed in 12 (28.6%) patients. Overall in-field CR and overall CR were achieved in 59.6% and 33.3%, respectively. Overall 1-year and 3-year survival rates were 92.9% and 58.6%, respectively. In-field progression-free survival at 1 and 3 years was 72.0% and 67.5%, respectively. Patients with smaller tumor had better in-field progression-free survival and overall survival rates (<32 cc vs. ≥32 cc, <it>P </it>< 0.05). No major toxicity was encountered but one patient died with extrahepatic metastasis and radiation-induced hepatic failure.</p> <p>Conclusions</p> <p>SBRT is a promising noninvasive-treatment for small HCC that is ineligible for local treatment or surgical resection.</p

    Stereotactic body radiation therapy with or without transarterial chemoembolization for patients with primary hepatocellular carcinoma: preliminary analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The objectives of this retrospective study was to evaluate the efficacy of stereotactic body radiation therapy (SBRT) for small non-resectable hepatocellular carcinoma (HCC) and SBRT combined with transarterial chemoembolization (TACE) for advanced HCC with portal vein tumor thrombosis (PVTT).</p> <p>Methods</p> <p>Thirty one patients with HCC who were treated with SBRT were used for the study. We studied 32 HCC lesions, where 23 lesions (22 patients) were treated targeting small non-resectable primary HCC, and 9 lesions (9 patients) targeting PVTT using the Cyberknife. All the 9 patients targeting PVTT received TACE for the advanced HCC. Tumor volume was 3.6–57.3 cc (median, 25.2 cc) and SBRT dose was 30–39 Gy (median, 36 Gy) in 3 fractions for consecutive days for 70–85% of the planned target volume.</p> <p>Results</p> <p>The median follow up was 10.5 months. The overall response rate was 71.9% [small HCC: 82.6% (19/23), advanced HCC with PVTT: 44.4% (4/9)], with the complete and partial response rates of 31.3% [small HCC: 26.1% (6/23), advanced HCC with PVTT: 11.1% (1/9)], and 50.0% [small HCC: 56.5% (13/23), advanced HCC with PVTT: 33.3% (3/9)], respectively. The median survival period of small HCC and advanced HCC with PVTT patients was 12 months and 8 months, respectively. No patient experienced Grade 4 toxicity.</p> <p>Conclusion</p> <p>SBRT for small HCC and SBRT combined with TACE for advanced HCC with PVTT showed feasible treatment modalities with minimal side effects in selected patients with primary HCC.</p

    Linking transcriptional and genetic tumor heterogeneity through allele analysis of single-cell RNA-seq data

    Get PDF
    Characterization of intratumoral heterogeneity is critical to cancer therapy, as the presence of phenotypically diverse cell populations commonly fuels relapse and resistance to treatment. Although genetic variation is a well-studied source of intratumoral heterogeneity, the functional impact of most genetic alterations remains unclear. Even less understood is the relative importance of other factors influencing heterogeneity, such as epigenetic state or tumor microenvironment. To investigate the relationship between genetic and transcriptional heterogeneity in a context of cancer progression, we devised a computational approach called HoneyBADGER to identify copy number variation and loss of heterozygosity in individual cells from single-cell RNA-sequencing data. By integrating allele and normalized expression information, HoneyBADGER is able to identify and infer the presence of subclone-specific alterations in individual cells and reconstruct the underlying subclonal architecture. By examining several tumor types, we show that HoneyBADGER is effective at identifying deletions, amplifications, and copy-neutral loss-of-heterozygosity events and is capable of robustly identifying subclonal focal alterations as small as 10 megabases. We further apply HoneyBADGER to analyze single cells from a progressive multiple myeloma patient to identify major genetic subclones that exhibit distinct transcriptional signatures relevant to cancer progression. Other prominent transcriptional subpopulations within these tumors did not line up with the genetic subclonal structure and were likely driven by alternative, nonclonal mechanisms. These results highlight the need for integrative analysis to understand the molecular and phenotypic heterogeneity in cancer

    Mechanisms Underlying Hypoxia Tolerance in Drosophila melanogaster: hairy as a Metabolic Switch

    Get PDF
    Hypoxia-induced cell injury has been related to multiple pathological conditions. In order to render hypoxia-sensitive cells and tissues resistant to low O2 environment, in this current study, we used Drosophila melanogaster as a model to dissect the mechanisms underlying hypoxia-tolerance. A D. melanogaster strain that lives perpetually in an extremely low-oxygen environment (4% O2, an oxygen level that is equivalent to that over about 4,000 m above Mt. Everest) was generated through laboratory selection pressure using a continuing reduction of O2 over many generations. This phenotype is genetically stable since selected flies, after several generations in room air, survive at this low O2 level. Gene expression profiling showed striking differences between tolerant and naïve flies, in larvae and adults, both quantitatively and qualitatively. Up-regulated genes in the tolerant flies included signal transduction pathways (e.g., Notch and Toll/Imd pathways), but metabolic genes were remarkably down-regulated in the larvae. Furthermore, a different allelic frequency and enzymatic activity of the triose phosphate isomerase (TPI) was present in the tolerant versus naïve flies. The transcriptional suppressor, hairy, was up-regulated in the microarrays and its binding elements were present in the regulatory region of the specifically down-regulated metabolic genes but not others, and mutations in hairy significantly reduced hypoxia tolerance. We conclude that, the hypoxia-selected flies: (a) altered their gene expression and genetic code, and (b) coordinated their metabolic suppression, especially during development, with hairy acting as a metabolic switch, thus playing a crucial role in hypoxia-tolerance

    Trichostatin A enhances acetylation as well as protein stability of ERα through induction of p300 protein

    Get PDF
    This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Abstract Introduction Trichostatin A (TSA) is a well-characterized histone deacetylase (HDAC) inhibitor. TSA modifies the balance between HDAC and histone acetyltransferase activities that is important in chromatin remodeling and gene expression. Although several previous studies have demonstrated the role of TSA in regulation of estrogen receptor alpha (ERα), the precise mechanism by which TSA affects ERα activity remains unclear. Methods Transient transfection was performed using the Welfect-EX™Plus procedure. The mRNA expression was determined using RT-PCR. Protein expression and interaction were determined by western blotting and immunoprecipitation. The transfection of siRNAs was performed using the Oligofectamine™ reagent procedure. Results TSA treatment increased acetylation of ERα in a dose-dependent manner. The TSA-induced acetylation of ERα was accompanied by an increased stability of ERα protein. Interestingly, TSA also increased the acetylation and the stability of p300 protein. Overexpression of p300 induced acetylation and stability of ERα by blocking ubiquitination. Knockdown of p300 by RNA interference decreased acetylation as well as the protein level of ERα, indicating that p300 mediated the TSA-induced stabilization of ERα. Conclusions We report that TSA enhanced acetylation as well as the stability of the ERα protein by modulating stability of p300. These results may provide the molecular basis for pharmacological functions of HDAC inhibitors in the treatment of human breast cancer
    corecore