5 research outputs found

    Characterization and treatment effects on Mutaka kaolin for additive in coatings: Mineral composition, thermal and structural modifications

    No full text
    Previous studies in Uganda have primarily explored kaolin's applications in composites, pottery, bricks, and insulation, neglecting its potential for coatings and paints, which is crucial for industrialization and saving foreign exchange. This study investigates the transformation of kaolin through various treatments and analyzes their impacts on its physical and chemical properties for potential use in coating applications. Thermal analysis, X-ray Fluorescence Spectroscopy (XRF), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), and transmission electron microscopy (TEM) techniques were employed to assess these alterations. The results show that thermal treatment of kaolin at 45.9 °C had minimal impact on mass loss, while the crystallinity of kaolinite was found to be lost around 600 °C, resulting in structural changes. XRF result demonstrates variations in SiO2 and Al2O3 composition, with low TiO2 content desirable for paint and coating applications. XRD results showed well-defined diffractions associated with kaolinite in all treated and untreated kaolin samples. The presence of K-feldspar and quartz are also identified. However, the thermal treatment at 800 °C transforms kaolinite into metakaolin, essential for enhancing coating properties. SEM-EDS results indicate increased porosity and reduced impurities in the thermal-treated sample, which might enhance the whiteness and suitability of pigment and binder dispersion in coatings. TEM images confirmed the hexagonal nature of kaolinite platelets and demonstrated the amorphous nature of kaolin nanoparticles with ammonium molybdate treatment, which led to the delamination and exfoliation of kaolinite layers, improving dispersibility. Kaolin thermally treated exhibited good crystallinity, solid growth, cubic morphology, and uniform size distribution. These findings suggest that tailored treatments can optimize kaolin's properties, making it a promising additive for high-performance coatings

    Simulation metamodeling approach to complex design of garment assembly lines.

    No full text
    The today's competitive advantage of ready-made garment industry depends on the ability to improve the efficiency and effectiveness of resource utilization. Ready-made garment industry has long historically adopted fewer technological and process advancement as compared to automotive, electronics and semiconductor industries. Simulation modeling of garment assembly line has attracted a number of researchers as one way for insightful analysis of the system behaviour and improving its performance. However, most of simulation studies have considered ill-defined experimental design which cannot fully explore the assembly line design alternatives and does not uncover the interaction effects of the input variables. Simulation metamodeling is an approach to assembly line design which has recently been of interest to researchers. However, its application in garment assembly line design has never been well explored. In this paper, simulation metamodeling of trouser assembly line with 72 operations was demonstrated. The linear regression metamodel technique with resolution-V design was used. The effects of five factors: bundle size, job release policy, task assignment pattern, machine number and helper number on throughput of the trouser assembly line were studied. An increase of the production throughput by 28.63% was achieved for the best factors' setting of the metamodel

    Exponential Disruptive Technologies and the Required Skills of Industry 4.0

    No full text
    The 21st century has witnessed precipitous changes spanning from the way of life to the technologies that emerged. We have entered a nascent paradigm shift (industry 4.0) where science fictions have become science facts, and technology fusion is the main driver. Thus, ensuring that any advancement in technology reach and benefit all is the ideal opportunity for everyone. In this study, disruptive technologies of industry 4.0 were explored and quantified in terms of the number of their appearances in published literature. The study aimed at identifying industry 4.0 key technologies which have been ill-defined by previous researchers and to enumerate the required skills of industry 4.0. Comprehensive literature survey covering the field of engineering, production, and management was done in multidisciplinary databases: Google Scholar, Science Direct, Scopus, Sage, Taylor & Francis, and Emerald Insight. From the electronic survey, 35 disruptive technologies were quantified and 13 key technologies: Internet of Things, Big Data, 3D printing, Cloud computing, Autonomous robots, Virtual and Augmented reality, Cyber-physical system, Artificial intelligence, Smart sensors, Simulation, Nanotechnology, Drones, and Biotechnology were identified. Both technical and personal skills to be imparted into the human workforce for industry 4.0 were reported. The review identified the need to investigate the capability and the readiness of developing countries in adapting industry 4.0 in terms of the changes in the education systems and industrial manufacturing settings. This study proposes the need to address the integration of industry 4.0 concepts into the current education system

    Sustainable and Dynamic Competitiveness towards Technological Leadership of Industry 4.0: Implications for East African Community

    No full text
    The war to technology and economic powers has been the driver for industrialization in most developed countries. The first industrial revolution (industry 1.0) earned millions for textile mill owners, while the second industrial revolution (industry 2.0) opened the way for tycoons and captains of industry such as Henry Ford, John D. Rockefeller, and J.P. Morgan. The third industrial revolution (industry 3.0) engendered technology giants such as Apple and Microsoft and made magnates of men such as Bill Gates and Steve Jobs. Now, the race for the fourth industrial revolution (industry 4.0) is on and there is no option, and every country whether developed or developing must participate. Many countries have positively responded to industry 4.0 by developing strategic initiatives to strengthen industry 4.0 implementation. Unlocking the country’s potential to industry 4.0 has been of interest to researchers in the recent past. However, the extent to which industry 4.0 initiatives are being launched globally has never been divulged. Therefore, the present study aimed at exploring industry 4.0 initiatives through a comprehensive electronic survey of the literature to estimate the extent of their launching in different regions. Inferences were drawn from industry 4.0 initiatives in developed nations to be used as the recommendations for the East African Community. Results of the survey revealed that 117 industry 4.0 initiatives have been launched in 56 countries worldwide consisting of five regions: Europe (37%), North America (28%), Asia and Oceania (17%), Latin America and the Caribbean (10%), and Middle East and Africa (8%). The worldwide percentage was estimated as 25%. This revealed that there is a big gap existing between countries in the race for industry 4.0

    Industry 4.0 Disruption and Its Neologisms in Major Industrial Sectors: A State of the Art

    No full text
    Very well into the dawn of the fourth industrial revolution (industry 4.0), humankind can hardly distinguish between what is artificial and what is natural (e.g., man-made virus and natural virus). Thus, the level of discombobulation among people, companies, or countries is indeed unprecedented. The fact that industry 4.0 is explosively disrupting or retrofitting each and every industrial sector makes industry 4.0 the famous buzzword amongst researchers today. However, the insight of industry 4.0 disruption into the industrial sectors remains ill-defined in both academic and nonacademic literature. The present study aimed at identifying industry 4.0 neologisms, understanding the industry 4.0 disruption and illustrating the disruptive technology convergence in the major industrial sectors. A total of 99 neologisms of industry 4.0 were identified. Industry 4.0 disruption in the education industry (education 4.0), energy industry (energy 4.0), agriculture industry (agriculture 4.0), healthcare industry (healthcare 4.0), and logistics industry (logistics 4.0) was described. The convergence of 12 disruptive technologies including 3D printing, artificial intelligence, augmented reality, big data, blockchain, cloud computing, drones, Internet of Things, nanotechnology, robotics, simulation, and synthetic biology in agriculture, healthcare, and logistics industries was illustrated. The study divulged the need for extensive research to expand the application areas of the disruptive technologies in the industrial sectors
    corecore