26 research outputs found

    Targeted Next Generation Sequencing for malaria research in Africa:Current status and outlook

    Get PDF
    Targeted Next Generation Sequencing (TNGS) is an efficient and economical Next Generation Sequencing (NGS) platform and the preferred choice when specific genomic regions are of interest. So far, only institutions located in middle and high-income countries have developed and implemented the technology, however, the efficiency and cost savings, as opposed to more traditional sequencing methodologies (e.g. Sanger sequencing) make the approach potentially well suited for resource-constrained regions as well. In April 2018, scientists from the Plasmodium Diversity Network Africa (PDNA) and collaborators met during the 7th Pan African Multilateral Initiative of Malaria (MIM) conference held in Dakar, Senegal to explore the feasibility of applying TNGS to genetic studies and malaria surveillance in Africa. The group of scientists reviewed the current experience with TNGS platforms in sub-Saharan Africa (SSA) and identified potential roles the technology might play to accelerate malaria research, scientific discoveries and improved public health in SSA. Research funding, infrastructure and human resources were highlighted as challenges that will have to be mitigated to enable African scientists to drive the implementation of TNGS in SSA. Current roles of important stakeholders and strategies to strengthen existing networks to effectively harness this powerful technology for malaria research of public health importance were discussed

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Understanding P. falciparum asymptomatic infections: a proposition for a transcriptomic approach

    No full text
    Malaria is still a significant public health burden in the tropics. Infection with malaria causing parasites results in a wide range of clinical disease presentations, from severe to uncomplicated or mild, and in the poorly understood asymptomatic infections. The complexity of asymptomatic infections is due to the intricate interplay between factors derived from the human host, parasite, and environment. Asymptomatic infections often go undetected and provide a silent natural reservoir that sustains malaria transmission. This creates a major obstacle for malaria control and elimination efforts. Numerous studies have tried to characterize asymptomatic infections, unanimously revealing that host immunity is the underlying factor in the maintenance of these infections and in the risk of developing febrile malaria infections. An in-depth understanding of how host immunity and parasite factors interact to cause malaria disease tolerance is thus required. This review primarily focuses on understanding anti-inflammatory and pro-inflammatory responses to asymptomatic infections in malaria endemic areas, to present the view that it is potentially the shift in host immunity toward an anti-inflammatory profile that maintains asymptomatic infections after multiple exposures to malaria. Conversely, symptomatic infections are skewed toward a pro-inflammatory immune profile. Moreover, we propose that these infections can be better interrogated using next generation sequencing technologies, in particular RNA sequencing (RNA-seq), to investigate the immune system using the transcriptome sampled during a clearly defined asymptomatic infection

    Temporal trends in prevalence of Plasmodium falciparum drug resistance alleles over two decades of changing antimalarial policy in coastal Kenya.

    Get PDF
    Molecular surveillance of drug resistance markers through time provides crucial information on genomic adaptations, especially in parasite populations exposed to changing drug pressures. To assess temporal trends of established genotypes associated with tolerance to clinically important antimalarials used in Kenya over the last two decades, we sequenced a region of the pfcrt locus encompassing codons 72-76 of the Plasmodium falciparum chloroquine resistance transporter, full-length pfmdr1 - encoding multi-drug resistance protein, P-glycoprotein homolog (Pgh1) and pfdhfr encoding dihydrofolate reductase, in 485 archived Plasmodium falciparum positive blood samples collected in coastal Kenya at four different time points between 1995 and 2013. Microsatellite loci were also analyzed to compare the genetic backgrounds of parasite populations circulating before and after the withdrawal of chloroquine and sulfadoxine/pyrimethamine. Our results reveal a significant increase in the prevalence of the pfcrt K76 wild-type allele between 1995 and 2013 from 38% to 81.7% (p < 0.0001). In contrast, we noted a significant decline in wild-type pfdhfr S108 allele (p < 0.0001) culminating in complete absence of this allele in 2013. We also observed a significant increase in the prevalence of the wild-type pfmdr1 N86/Y184/D1246 haplotype from 14.6% in 1995 to 66.0% in 2013 (p < 0.0001) and a corresponding decline of the mutant pfmdr1 86Y/184Y/1246Y allele from 36.4% to 0% in 19 years (p < 0.0001). We also show extensive genetic heterogeneity among the chloroquine-sensitive parasites before and after the withdrawal of the drug in contrast to a selective sweep around the triple mutant pfdhfr allele, leading to a mono-allelic population at this locus. These findings highlight the importance of continual surveillance and characterization of parasite genotypes as indicators of the therapeutic efficacy of antimalarials, particularly in the context of changes in malaria treatment policy

    Peripheral blood mononuclear cell transcriptomes reveal an over-representation of down-regulated genes associated with immunity in HIV-exposed uninfected infants

    No full text
    HIV-exposed uninfected (HEU) infants are disproportionately at a higher risk of morbidity and mortality, as compared to HIV-unexposed uninfected (HUU) infants. Here, we used transcriptional profiling of peripheral blood mononuclear cells to determine immunological signatures of in utero HIV exposure. We identified 262 differentially expressed genes (DEGs) in HEU compared to HUU infants. Weighted gene co-expression network analysis (WGCNA) identified six modules that had significant associations with clinical traits. Functional enrichment analysis on both DEGs and the six significantly associated modules revealed an enrichment of G-protein coupled receptors and the immune system, specifically affecting neutrophil function and antibacterial responses. Additionally, malaria pathogenicity genes (thrombospondin 1-(THBS 1), interleukin 6 (IL6), and arginine decarboxylase 2 (ADC2)) were down-regulated. Of interest, the down-regulated immunity genes were positively correlated to the expression of epigenetic factors of the histone family and high-mobility group protein B2 (HMGB2), suggesting their role in the dysregulation of the HEU transcriptional landscape. Overall, we show that genes primarily associated with neutrophil mediated immunity were repressed in the HEU infants. Our results suggest that this could be a contributing factor to the increased susceptibility to bacterial infections associated with higher morbidity and mortality commonly reported in HEU infants

    The Plasmodium falciparum Rh5 invasion protein complex reveals an excess of rare variant mutations

    No full text
    Background The invasion of the red blood cells by Plasmodium falciparum merozoites involves the interplay of several proteins that are also targets for vaccine development. The proteins PfRh5-PfRipr-PfCyRPA-Pfp113 assemble into a complex at the apical end of the merozoite and are together essential for erythrocyte invasion. They have also been shown to induce neutralizing antibodies and appear to be less polymorphic than other invasion-associated proteins, making them high priority blood-stage vaccine candidates. Using available whole genome sequencing data (WGS) and new capillary sequencing data (CS), this study describes the genetic polymorphism in the Rh5 complex in P. falciparum isolates obtained from Kilifi, Kenya. Methods 162 samples collected in 2013 and 2014 were genotyped by capillary sequencing (CS) and re-analysed WGS from 68 culture-adapted P. falciparum samples obtained from a drug trial conducted from 2005 to 2007. The frequency of polymorphisms in the merozoite invasion proteins, PfRh5, PfRipr, PfCyRPA and PfP113 were examined and where possible polymorphisms co-occurring in the same isolates. Results From a total 70 variants, including 2 indels, 19 SNPs [27.1%] were identified by both CS and WGS, while an additional 15 [21.4%] and 36 [51.4%] SNPs were identified only by either CS or WGS, respectively. All the SNPs identified by CS were non-synonymous, whereas WGS identified 8 synonymous and 47 non-synonymous SNPs. CS identified indels in repeat regions in the p113 gene in codons 275 and 859 that were not identified in the WGS data. The minor allele frequencies of the SNPs ranged between 0.7 and 34.9% for WGS and 1.1–29.6% for CS. Collectively, 12 high frequency SNPs (> 5%) were identified: four in Rh5 codon 147, 148, 203 and 429, two in p113 at codons 7 and 267 and six in Ripr codons 190, 259, 524, 985, 1003 and 1039. Conclusion This study reveals that the majority of the polymorphisms are rare variants and confirms a low level of genetic polymorphisms in all proteins within the Rh5 complex

    Transmission and age impact the risk of developing febrile malaria in children with asymptomatic Plasmodium falciparum parasitemia

    No full text
    Background Plasmodium falciparum infections lead to febrile illness unless the host has sufficient immunity, in which case infection may cause no immediate symptoms (ie, “asymptomatic parasitemia”). Previous studies are conflicting on the role of asymptomatic parasitemia in determining the risk of developing febrile malaria. Methods We monitored 2513 children (living in Kilifi, Kenyan Coast) by blood smears in 17 cross-sectional surveys to identify asymptomatic parasitemia and used active surveillance over 11325 child-years of follow-up to detect febrile malaria. We evaluated the interaction between transmission intensity, age, and asymptomatic parasitemia in determining the risk of developing febrile malaria. Results In the moderate and high transmission intensity settings, asymptomatic parasitemia was associated with a reduced risk of febrile malaria in older children (> 3 years), while in the lower transmission setting, asymptomatic parasitemia was associated with an increased risk of febrile malaria in children of all ages. Additionally, the risk associated with asymptomatic parasitemia was limited to the first 90 days of follow-up. Conclusions Asymptomatic parasitemia is modified by transmission intensity and age, altering the risk of developing febrile episodes and suggesting that host immunity plays a prominent role in mediating this process

    Few Plasmodium falciparum merozoite ligand and erythrocyte receptor pairs show evidence of balancing selection

    No full text
    Erythrocyte surface proteins have been identified as receptors of Plasmodium falciparum merozoite proteins. The ligand-receptor interactions enable the parasite to invade human erythrocytes, initiating the clinical symptoms of malaria. These interactions are likely to have had an evolutionary impact on the genes that encode the ligand and receptor proteins. We used sequence data from Kilifi, Kenya to detect departures from neutrality in a paired analysis of P. falciparum merozoite ligands and their erythrocyte receptor genes from the same population. We genotyped parasite and human DNA obtained from 93 individuals with severe malaria. We examined six merozoite ligands EBA175, EBL1, EBA140, MSP1, Rh4 and Rh5, and their corresponding erythrocyte receptors, glycophorin (Gyp) A, GypB, GypC, band 3, complement receptor (CR) 1 and basigin, focusing on the regions involved in the ligand-receptor interactions. Positive Tajima's D values (>1) were observed only in the MSP1 C-terminal region and EBA175 region II, while negative values (<-1) were observed in EBL-1 region II, Rh4, basigin exons 3 and 5, CR1 exon 5, Gyp B exons 2, 3 and 4 and Gyp C exon 2. Additionally, ebl-1 region II and basigin exon 3 showed extreme negative values in all three tests, Tajima's D, Fu & Li D* and F*, ≤ - 2. A large majority of the erythrocyte receptor and merozoite genes have a negative Tajima's D even when compared with previously published whole genome data. Thus, highlighting EBA175 region II and MSP1-33, as outlier genes with a positive Tajima's D (>1). Both these genes contain multiple polymorphisms, which in the case of EBA175 may counteract receptor polymorphisms and/or evade host immune responses and in MSP1 the polymorphisms may primarily evade host immune responses

    The MSPDBL2 codon 591 polymorphism is associated with lumefantrine in vitro drug responses in Plasmodium falciparum isolates from Kilifi, Kenya.

    Get PDF
    The mechanisms of drug resistance development in the Plasmodium falciparum parasite to lumefantrine (LUM), commonly used in combination with artemisinin are still unclear. We assessed the polymorphisms of Pfmspdbl2, for associations with LUM activity in a Kenyan population. MSPDBL2 codon 591S was associated with reduced susceptibility to LUM (p=0.04). The high frequency of Pfmspdbl2 codon 591S in Kenya, may be driven by the widespread use of lumefantrine in the artemisinin combination therapy, Coartem

    Maintenance of high temporal Plasmodium falciparum genetic diversity and complexity of infection in asymptomatic and symptomatic infections in Kilifi, Kenya from 2007 to 2018

    Get PDF
    Background High levels of genetic diversity are common characteristics of Plasmodium falciparum parasite populations in high malaria transmission regions. There has been a decline in malaria transmission intensity over 12 years of surveillance in the community in Kilifi, Kenya. This study sought to investigate whether there was a corresponding reduction in P. falciparum genetic diversity, using msp2 as a genetic marker. Methods Blood samples were obtained from children (< 15 years) enrolled into a cohort with active weekly surveillance between 2007 and 2018 in Kilifi, Kenya. Asymptomatic infections were defined during the annual cross-sectional blood survey and the first-febrile malaria episode was detected during the weekly follow-up. Parasite DNA was extracted and successfully genotyped using allele-specific nested polymerase chain reactions for msp2 and capillary electrophoresis fragment analysis. Results Based on cross-sectional surveys conducted in 2007–2018, there was a significant reduction in malaria prevalence (16.2–5.5%: P-value  0.95) was observed in both asymptomatic infections and febrile malaria over time. About 281 (68.5%) asymptomatic infections were polyclonal (> 2 variants per infection) compared to 46 (56%) polyclonal first-febrile infections. There was significant difference in complexity of infection (COI) between asymptomatic 2.3 [95% confidence interval (CI) 2.2–2.5] and febrile infections 2.0 (95% CI 1.7–2.3) (P = 0.016). Majority of asymptomatic infections (44.2%) carried mixed alleles (i.e., both FC27 and IC/3D7), while FC27 alleles were more frequent (53.3%) among the first-febrile infections. Conclusions Plasmodium falciparum infections in Kilifi are still highly diverse and polyclonal, despite the reduction in malaria transmission in the community
    corecore