1,722 research outputs found

    Acceptance Corrections and Extreme-Independent Models in Relativistic Heavy Ion Collisions

    Full text link
    Kopeliovich's suggestion [nucl-th/0306044] to perform nuclear geometry (Glauber) calculations using different cross sections according to the experimental configuration is quite different from the standard practice of the last 20 years and leads to a different nuclear geometry definition for each experiment. The standard procedure for experimentalists is to perform the nuclear geometry calculation using the total inelastic N-N cross section, which results in a common nuclear geometry definition for all experiments. The incomplete acceptance of individual experiments is taken into account by correcting the detector response for the probability of measuring zero for an inelastic collision, which can often be determined experimentally. This clearly separates experimental issues such as different acceptances from theoretical issues which should apply in general to all experiments. Extreme-Independent models are used to illustrate the conditions for which the two methods give consistent or inconsistent results.Comment: 4 pages, 1 figure, published in Physical Review

    Plus-minus construction leads to perfect invisibility

    Full text link
    Recent theoretical advances applied to metamaterials have opened new avenues to design a coating that hides objects from electromagnetic radiation and even the sight. Here, we propose a new design of cloaking devices that creates perfect invisibility in isotropic media. A combination of positive and negative refractive indices, called plus-minus construction, is essential to achieve perfect invisibility (i.e., no time delay and total absence of reflection). Contrary to the common understanding that between two isotropic materials having different refractive indices the electromagnetic reflection is unavoidable, our method shows that surprisingly the reflection phenomena can be completely eliminated. The invented method, different from the classical impedance matching, may also find electromagnetic applications outside of cloaking devices, wherever distortions are present arising from reflections.Comment: 24 pages, 10 figure

    Photonic analog of graphene model and its extension -- Dirac cone, symmetry, and edge states --

    Full text link
    This paper presents a theoretical analysis on bulk and edge states in honeycomb lattice photonic crystals with and without time-reversal and/or space-inversion symmetries. Multiple Dirac cones are found in the photonic band structure and the mass gaps are controllable via symmetry breaking. The zigzag and armchair edges of the photonic crystals can support novel edge states that reflect the symmetries of the photonic crystals. The dispersion relation and the field configuration of the edge states are analyzed in detail in comparison to electronic edge states. Leakage of the edge states to free space is inherent in photonic systems and is fully taken into account in the analysis. A topological relation between bulk and edge, which is analogous to that found in quantum Hall systems, is also verified.Comment: 9 pages, 7 figure

    Probing the microscopic structure of bound states in quantum point contacts

    Full text link
    Using an approach that allows us to probe the electronic structure of strongly pinched-off quantum point contacts (QPCs), we provide evidence for the formation of self-consistently realized bound states (BSs) in these structures. Our approach exploits the resonant interaction between closely-coupled QPCs, and demonstrates that the BSs may give rise to a robust confinement of single spins, which show clear Zeeman splitting in a magnetic field

    Influence of Magnetic Moment Formation on the Conductance of Coupled Quantum Wires

    Full text link
    In this report, we develop a model for the resonant interaction between a pair of coupled quantum wires, under conditions where self-consistent effects lead to the formation of a local magnetic moment in one of the wires. Our analysis is motivated by the experimental results of Morimoto et al. [Appl. Phys. Lett. \bf{82}, 3952 (2003)], who showed that the conductance of one of the quantum wires exhibits a resonant peak at low temperatures, whenever the other wire is swept into the regime where local-moment formation is expected. In order to account for these observations, we develop a theoretical model for the inter-wire interaction that calculated the transmission properties of one (the fixed) wire when the device potential is modified by the presence of an extra scattering term, arising from the presence of the local moment in the swept wire. To determine the transmission coefficients in this system, we derive equations describing the dynamics of electrons in the swept and fixed wires of the coupled-wire geometry. Our analysis clearly shows that the observation of a resonant peak in the conductance of the fixed wire is correlated to the appearance of additional structure (near 0.75⋅0.75\cdot or 0.25⋅2e2/h0.25\cdot 2e^2/h) in the conductance of the swept wire, in agreement with the experimental results of Morimoto et al

    False vacuum decay in a brane world cosmological model

    Full text link
    The false vacuum decay in a brane world model is studied in this work. We investigate the vacuum decay via the Coleman-de Luccia instanton, derive explicit approximative expressions for the Coleman-de Luccia instanton which is close to a Hawking-Moss instanton and compare the results with those already obtained within Einstein's theory of relativity.Comment: minor changes done, references added, version to appear in GR
    • 

    corecore