161 research outputs found

    Building up original evidence

    Get PDF

    INFLUENCE OF ACOUSTIC PRESSURE AND FLEXURAL VIBRATION ON FRICTION REDUCTION EFFECT BY ULTRASONIC

    Get PDF
    ABSTRACT The influence of acoustic pressure and flexural vibration on friction reduction effect by ultrasonic has been investigated in this study. Then the relationship between friction reduction of particles by each effect and the particle density has been shown by using of ultrasonic. Additionally, the maximum of particle density which could receive the friction reduction effect by the acoustic pressure has been expressed. In short, when the particle density was large, the influence of friction reduction effect by the acoustic pressure decreased and the influence of friction reduction effect by the flexural vibration grew. In this study, two plates were set parallel to each other. The dried particles were scattered on the lower plate, and the ultrasonic was applied. Then, the entire equipment setup was tilted slowly until the scattered particles began to move, and the friction coefficient was measured. Then, influence of acoustic pressure and flexural vibration were evaluated. In order to evaluate the reduction effect by acoustic pressure and flexural vibration, firstly, the distribution of acoustic pressure between reflection plate and the vibration plate have been measured. As a result, it was clarified that acoustic pressure distribution became the almost same whether ultrasonic was applied for the upper or lower plate, and the reflection plate vibrated little. Therefore it was possible to divide the influence of acoustic pressure and flexural vibration on the friction reduction

    Surgical Treatment for Skeletal Metastases From Soft Tissue Sarcomas: Experience With 23 Lesions in 20 Patients

    Get PDF
    Purpose. This paper reports the procedures and the clinical results of a series of surgical treatments for skeletal metastases from soft tissue sarcomas

    Relationship Between Balance Recovery From a Forward Fall and Lower-Limb Rate of Torque Development

    Get PDF
    The authors examined the relationship between the maximum recoverable lean angle via the tether-release method with early- or late-phase rate of torque development (RTD) and maximum torque of lower-limb muscle groups in 56 young healthy adults. Maximal isometric torque and RTD at the hip, knee, and ankle were recorded. The RTD at 50-ms intervals up to 250 ms from force onset was calculated. The results of a stepwise multiple regression analysis, early RTD for hip flexion, and knee flexion were chosen as predictive variables for the maximum recoverable lean angle. The present study suggests that some of the early RTD in the lower limb muscles, but not the maximum isometric torque, can predict the maximum recoverable lean angle
    corecore