18 research outputs found

    Transglutaminase Type 2 Regulates ER-Mitochondria Contact Sites by Interacting with GRP75

    Get PDF
    Transglutaminase type 2 (TG2) is a multifunctional enzyme that plays a key role in mitochondria homeostasis under stressful cellular conditions. TG2 interactome analysis reveals an enzyme interaction with GRP75 (glucose-regulated protein 75). GRP75 localizes in mitochondria-associated membranes (MAMs) and acts as a bridging molecule between the two organelles by assembling the IP3R-GRP75-VDAC complex, which is involved in the transport of Ca2+ from the endoplasmic reticulum (ER) to mitochondria. We demonstrate that the TG2 and GRP75 interaction occurs in MAMs. The absence of the TG2-GRP75 interaction leads to an increase of the interaction between IP3R-3 and GRP75; a decrease of the number of ER-mitochondria contact sites; an impairment of the ER-mitochondrial Ca2+ flux; and an altered profile of the MAM proteome. These findings indicate TG2 is a key regulatory element of the MAMs

    The multifaceted role of HSF1 in pathophysiology: Focus on its interplay with TG2

    No full text
    The cellular environment needs to be strongly regulated and the maintenance of protein homeostasis is crucial for cell function and survival. HSF1 is the main regulator of the heat shock response (HSR), the master pathway required to maintain proteostasis, as involved in the expression of the heat shock proteins (HSPs). HSF1 plays numerous physiological functions; however, the main role concerns the modulation of HSPs synthesis in response to stress. Alterations in HSF1 function impact protein homeostasis and are strongly linked to diseases, such as neurodegenerative disorders, metabolic diseases, and different types of cancers. In this context, type 2 Transglutaminase (TG2), a ubiquitous enzyme activated during stress condition has been shown to promote HSF1 activation. HSF1-TG2 axis regulates the HSR and its function is evolutionary conserved and implicated in pathological conditions. In this review, we discuss the role of HSF1 in the maintenance of proteostasis with regard to the HSF1-TG2 axis and we dissect the stress response pathways implicated in physiological and pathological conditions

    Transglutaminase type 2-dependent crosslinking of IRF3 in dying melanoma cells

    No full text
    cGAS/STING axis is the major executor of cytosolic dsDNA sensing that leads to the production of type I interferon (IFNI) not only upon bacterial infection, but also in cancer cells, upon DNA damage. In fact, DNA damage caused by ionizing radiations and/or topoisomerase inhibitors leads to a release of free DNA into the cytosol, which activates the cGAS/STING pathway and the induction of IFNI expression. Doxorubicin-induced apoptotic cancer cells release damage-associated molecular patterns (DAMPs), including IFNI, which are able to stimulate the immune system. Our results indicate that Transglutaminase type 2 (TG2) is directly involved in the formation of a covalent cross-linked IRF3 (Interferon regulatory factor 3) dimers, thereby limiting the production of IFNI. Indeed, we demonstrated that upon doxorubicin treatment TG2 translocates into the nucleus of apoptotic melanoma cells interacting with IRF3 dimers. Interestingly, we show that both the knockdown of the enzyme as well as the inhibition of its transamidating activity lead to a decrease in the dimerization of IRF3 correlated with an increase in the IFNI mRNA levels. Taken together, these data demonstrate that TG2 negatively regulates the IRF3 pathway in human melanoma cells suggesting a so far unknown TG2-dependent mechanism by which cancer cells reduce the IFNI production after DNA damage to limit the immune system response

    Type 2 transglutaminase in the nucleus: the new epigenetic face of a cytoplasmic enzyme

    No full text
    One of the major mysteries in science is how it is possible to pack the cellular chromatin with a total length of over 1 m, into a small sphere with a diameter of 5 mm “the nucleus”, and even more difficult to envisage how to make it functional. Although we know that compaction is achieved through the histones, however, the DNA needs to be accessible to the transcription machinery and this is allowed thanks to a variety of very complex epigenetic mechanisms. Either DNA (methylation) or post-translational modifications of histone proteins (acetylation, methylation, ubiquitination and sumoylation) play a crucial role in chromatin remodelling and consequently on gene expression. Recently the serotonylation and dopaminylation of the histone 3, catalyzed by the Transglutaminase type 2 (TG2), has been reported. These novel post-translational modifications catalyzed by a predominantly cytoplasmic enzyme opens a new avenue for future investigations on the enzyme function itself and for the possibility that other biological amines, substrate of TG2, can influence the genome regulation under peculiar cellular conditions. In this review we analyzed the nuclear TG2’s biology by discussing both its post-translational modification of various transcription factors and the implications of its epigenetic new face. Finally, we will focus on the potential impact of these events in human diseases

    Transglutaminase Type 2 regulates the Wnt/\u3b2-catenin pathway in vertebrates

    No full text
    TG2 is a multifunctional enzyme involved in several cellular processes and has emerging as a potential regulator of gene expression. In this regard, we have recently shown that TG2 is able to activate HSF1, the master transcriptional regulator of the stress\u2010responsive genes; however, its effect on the overall gene expression remains unclear. To address this point, we analyzed, by RNA-seq, the effect of TG2 on the overall transcriptome as well as we characterized the TG2 interactome in the nucleus. The data obtained from these omics approaches reveal that TG2 markedly influences the overall cellular transcriptome profile and specifically the Wnt and HSF1 pathways. In particular, its ablation leads to a drastic downregulation of many key members of these pathways. Interestingly, we found that key components of the Wnt/\u3b2-catenin pathway are also downregulated in cells lacking HSF1, thus confirming that TG2 regulates the HSF1 and this axis controls the Wnt signaling. Mechanistic studies revealed that TG2 can regulate the Wnt pathway by physically interacts with \u3b2-catenin and its nuclear interactome includes several proteins known to be involved in the regulation of the Wnt signaling. In order to verify whether this effect is playing a role in vivo, we ablated TG2 in Danio rerio. Our data show that the zebrafish lacking TG2 cannot complete the development and their death is associated with an evident downregulation of the Wnt pathway and a defective heat-shock response. Our findings show for the first time that TG2 is essential for the correct embryonal development of lower vertebrates, and its action is mediated by the Wnt/HSF1 axis
    corecore