846 research outputs found

    Temperature modelling and model predictive control of a pilot-scale batch reaction system

    Get PDF
    The temperature control equipment on a pilot scale batch reaction system located at EAFIT University in Medelln, Colombia, is modeled and a new controller is designed aiming at using it in the reactor current PLC-based control system. Some mathematical models are developed from experimental data to describe the system behavior and using them several model based predictive controllers are designed. The simplest, yet reliable, model obtained is an ARX polynomial model of order (1,1,1) that yields a four states ane model for which an explicit MPC was calculated. This controller has a reduced mathematical complexity and can probably be used directly on the existing control system.Preprin

    Decentralized energy management of power networks with distributed generation using periodical self-sufficient repartitioning approach

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this paper, we propose a decentralized model predictive control (MPC) method as the energy management strategy for a large-scale electrical power network with distributed generation and storage units. The main idea of the method is to periodically repartition the electrical power network into a group of self-sufficient interconnected microgrids. In this regard, a distributed graph-based partitioning algorithm is proposed. Having a group of self-sufficient microgrids allows the decomposition of the centralized dynamic economic dispatch problem into local economic dispatch problems for the microgrids. In the overall scheme, each microgrid must cooperate with its neighbors to perform repartitioning periodically and solve a decentralized MPC-based optimization problem at each time instant. In comparison to the approaches based on distributed optimization, the proposed scheme requires less intensive communication since the microgrids do not need to communicate at each time instant, at the cost of suboptimality of the solutions. The performance of the proposed scheme is shown by means of numerical simulations with a well-known benchmark case. © 2019 American Automatic Control Council.Peer ReviewedPostprint (author's final draft

    Energy efficiency in discrete-manufacturing systems: insights, trends, and control strategies

    Get PDF
    Since the depletion of fossil energy sources, rising energy prices, and governmental regulation restrictions, the current manufacturing industry is shifting towards more efficient and sustainable systems. This transformation has promoted the identification of energy saving opportunities and the development of new technologies and strategies oriented to improve the energy efficiency of such systems. This paper outlines and discusses most of the research reported during the last decade regarding energy efficiency in manufacturing systems, the current technologies and strategies to improve that efficiency, identifying and remarking those related to the design of management/control strategies. Based on this fact, this paper aims to provide a review of strategies for reducing energy consumption and optimizing the use of resources within a plant into the context of discrete manufacturing. The review performed concerning the current context of manufacturing systems, control systems implemented, and their transformation towards Industry 4.0 might be useful in both the academic and industrial dimension to identify trends and critical points and suggest further research lines.Peer ReviewedPreprin

    Modeling, diagnosis, and control of fuel-cell-based technologies and their integration in smart grids and automotive systems

    Get PDF
    Society is gradually becoming aware that the current energy system based on the use of fossil fuels is inefficient, highly polluting, and finite supply. Within the scientific community and industry stakeholders, there is a unified agreement that indicates that hydrogen (H2), as an energy vector, combined with other sources of alternative energy, represents a safe and viable option to mitigate the problems associated with hydrocarbon combustion because the entire system can be developed as an efficient, clean, and sustainable energy source. In this context, the change from the current energy system to a new system with a stronger involvement of H2 relentlessly involves the introduction of fuel cells as elements of efficient energy conversion.Peer Reviewe

    Energy efficiency improvement through MPC-based peripherals management for an industrial process test-bench

    Get PDF
    High energy costs evince the growing need for energy efficiency in industrial companies. This paper presents a solution at the industrial machine level to obtain efficient energy consumption. Therefore, a controller inspired by the well-known model predictive control (MPC) strategy was developed for the management of peripheral devices. The validation of the control requires a test-bench to emulate the energy consumption of a manufacturing machine. The test-bench has four devices, two used to emulate the periodic and fixed energy consumption of the manufacturing process and two as peripherals, subject to rules associated with the process. Consequently, a subspace identification (SI) was employed to identify energy models to simulate the behavior of the device. As a final step, a performance comparison between a rule-based control (RBC) and the proposed predictive-like controller revealed the remarkable energy savings. The MPC results show an energy saving of around 3% with respect to RBC as well as an instant maximum energy consumption reduction of 8%, approximately.Peer ReviewedPostprint (published version

    Distributed control of drinking water networks using population dynamics: Barcelona case study

    Get PDF
    Trabajo presentado a la 53rd IEEE Conference on Decision and Control (CDC 2014), celebrada del 15 al 17 de diciembre en Los Angeles, California (US).Large-scale network systems involve a large number of variables, making the design of real-time controllers challenging. A distributed controller design allows to reduce computational requirements since tasks may be divided into different subsystems, making possible to guarantee real-time processing. This paper proposes a constrained optimization based distributed control design by applying a novel population and masses dynamics approach. The distributed controller design is applied to the Barcelona Drinking Water Network (DWN) in order to illustrate its effectiveness in the control performance.This work has been partially supported by the projects COLCIENCIAS 548/2012, ECOCIS (Ref. DPI2013-48243-C2-1-R) and EFFINET (Ref. FP7-ICT-2011-8-31855). J. Barreiro-Gómez is supported by COLCIENCIAS and by the Agència de Gestió d’Ajust Universitaris i de Recerca AGAUR.Peer Reviewe

    Output-feedback model predictive control of a pasteurization pilot plant based on an LPV model

    Get PDF
    In order to optimize the trade-off between components life and energy consumption, the integration of a system health management and control modules is required. This paper proposes the integration of model predictive control (MPC) with a fatigue estimation approach that minimizes the damage of the components of a pasteurization plant. The fatigue estimation is assessed with the rainflow counting algorithm. Using data from this algorithm, a simplified model that characterizes the health of the system is developed and integrated with MPC. The MPC controller objective is modified by adding an extra criterion that takes into account the accumulated damage. But, a steady-state offset is created by adding this extra criterion. Finally, by including an integral action in the MPC controller, the steady-state error for regulation purpose is eliminated. The proposed control scheme is validated in simulation using a simulator of a utility-scale pasteurization plant.Peer ReviewedPostprint (author's final draft

    Distributed MPC with time-varying communication network: A density-dependent population games approach

    Get PDF
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This work addresses distributed control design by using density-dependent population dynamics. Furthermore, stability of the equilibrium point under this proposed class of population dynamics is studied, and the relationship between the equilibrium point of density-dependent population games (DDPG) and the solution of constrained optimization problems is shown. Finally, a distributed predictive control is designed with the proposed density-dependent dynamics, and contemplating a time-varying communication network.Peer ReviewedPostprint (author's final draft

    Constrained distributed optimization : A population dynamics approach

    Get PDF
    Large-scale network systems involve a large number of states, which makes the design of real-time controllers a challenging task. A distributed controller design allows to reduce computational requirements since tasks are divided into different systems, allowing real-time processing. This paper proposes a novel methodology for solving constrained optimization problems in a distributed way inspired by population dynamics. This methodology consists of an extension of a population dynamics equation and the introduction of a mass dynamics equation. The proposed methodology divides the problem into smaller sub-problems, whose feasible regions vary over time achieving an agreement to solve the global problem. The methodology also guarantees attraction to the feasible region and allows to have few changes in the decision-making design when a network suffers the addition/removal of nodes/edges. Then, distributed controllers are designed with the proposed methodology and applied to the large-scale Barcelona Drinking Water Network (BDWN). Some simulations are presented and discussed in order to illustrate the control performance.Peer ReviewedPostprint (author's final draft

    Algebraic observer design for PEM fuel cell system

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this paper, the concept of the algebraic observer is applied to Proton Exchange Membrane Fuel Cell (PEMFC) system. The aim of the proposed observer is to reconstruct the oxygen excess ratio through estimation of their relevant states in real time from the measurement of the supply manifold air pressure. A robust differentiation method is adopted to estimate in finite-time the time derivative of the supply manifold air pressure. Then, the relevant states are reconstructed based on the output-state inversion model. The objective is to minimize the use of extra sensors in order to reduce the costs and enhance the system accuracy. The performance of the proposed observer is analyzed through simulations considering measurement noise and different stack-current variations. The results show that the algebraic observer estimates in finite time and robustly the oxygen-excess ratio.Peer ReviewedPostprint (author's final draft
    corecore