1 research outputs found

    A Survey on Network Optimization Techniques for Blockchain Systems

    No full text
    The increase of the Internet of Things (IoT) calls for secure solutions for industrial applications. The security of IoT can be potentially improved by blockchain. However, blockchain technology suffers scalability issues which hinders integration with IoT. Solutions to blockchain’s scalability issues, such as minimizing the computational complexity of consensus algorithms or blockchain storage requirements, have received attention. However, to realize the full potential of blockchain in IoT, the inefficiencies of its inter-peer communication must also be addressed. For example, blockchain uses a flooding technique to share blocks, resulting in duplicates and inefficient bandwidth usage. Moreover, blockchain peers use a random neighbor selection (RNS) technique to decide on other peers with whom to exchange blockchain data. As a result, the peer-to-peer (P2P) topology formation limits the effective achievable throughput. This paper provides a survey on the state-of-the-art network structures and communication mechanisms used in blockchain and establishes the need for network-based optimization. Additionally, it discusses the blockchain architecture and its layers categorizes existing literature into the layers and provides a survey on the state-of-the-art optimization frameworks, analyzing their effectiveness and ability to scale. Finally, this paper presents recommendations for future work
    corecore