10 research outputs found

    Passive magnetic shielding in MRI-Linac systems.

    Get PDF
    Passive magnetic shielding refers to the use of ferromagnetic materials to redirect magnetic field lines away from vulnerable regions. An application of particular interest to the medical physics community is shielding in MRI systems, especially integrated MRI-linear accelerator (MRI-Linac) systems. In these systems, the goal is not only to minimize the magnetic field in some volume, but also to minimize the impact of the shield on the magnetic fields within the imaging volume of the MRI scanner. In this work, finite element modelling was used to assess the shielding of a side coupled 6 MV linac and resultant heterogeneity induced within the 30 cm diameter of spherical volume (DSV) of a novel 1 Tesla split bore MRI magnet. A number of different shield parameters were investigated; distance between shield and magnet, shield shape, shield thickness, shield length, openings in the shield, number of concentric layers, spacing between each layer, and shield material. Both the in-line and perpendicular MRI-Linac configurations were studied. By modifying the shield shape around the linac from the starting design of an open ended cylinder, the shielding effect was boosted by approximately 70% whilst the impact on the magnet was simultaneously reduced by approximately 10%. Openings in the shield for the RF port and beam exit were substantial sources of field leakage; however it was demonstrated that shielding could be added around these openings to compensate for this leakage. Layering multiple concentric shield shells was highly effective in the perpendicular configuration, but less so for the in-line configuration. Cautious use of high permeability materials such as Mu-metal can greatly increase the shielding performance in some scenarios. In the perpendicular configuration, magnetic shielding was more effective and the impact on the magnet lower compared with the in-line configuration

    Technical Note: EPID

    No full text

    4D Monte Carlo dose calculations for pre-treatment quality assurance of VMAT SBRT: A phantom-based feasibility study

    No full text
    Volumetric arc therapy (VMAT) for lung stereotactic body radiotherapy (SBRT) is challenging due to both breathing-induced motion and the dynamic components of the linear accelerator. In this study, a 4D Monte Carlo (4DMC) dose calculation method for VMAT SBRT is proposed and the feasibility of the method is evaluated. A rigidly-moving lung phantom was imaged using four dimensional computed tomography (4DCT). VMAT SBRT plans were generated on the average intensity projection dataset using the internal target volume (ITV) strategy (ITV-plan) and a single phase to simulate a dynamic treatment-couch tracking technique (TRACKING-plan). 4DMC simulations were performed and compared to 3D Monte Carlo (3DMC) and 3D- A nd 4Dcalculations in the treatment planning system using the adaptive convolution (AC) algorithm. Dose metrics calculated for the ITV-plan showed an overestimation with 3D adaptive convolution (3DAC) for D98% (GTV) by 3.5% and by 2.0% for 3DMC, both compared to 4DMC. The TRACKING-plan D98% (GTV) calculated with the 3DAC method overestimated by 2.0% compared with 4DMC. Deviations between the calculation methods for Dmean (Lung) and D95% (PTV) were minimal. For both plans, measurements were taken with EBT3 film inside the phantom tumour. EBT3 film profiles showed good agreement with 4DMC for the TRACKING-plan giving a gamma pass rate of 97.2% for 3%/3 mm global and for 3DAC compared with measured, 95.8%. Whereas for the ITV-plan, the 3D profiles varied from film in the ITV periphery region with a pass rates of 50% and 48.6% for 3DAC and 3DMC, respectively. 4DMC agreed more closely to measurements for this plan with a pass rate of 95.8%. We have proposed an accurate method to perform 4D dose calculations for pre-treatment quality assurance of VMAT SBRT. The method was compared to experimental measurements and for both plans, 4DMC dose agreed with measurements more closely than other evaluated dose calculation methods. This study has demonstrated the feasibility of this 4DMC method

    Experimental characterization of magnetically focused electron contamination at the surface of a high-field inline MRI-linac

    Full text link
    Purpose: The fringe field of the Australian MRI-linac causes contaminant electrons to be focused along the central axis resulting in a high surface dose. This work aims to characterize this effect using Gafchromic film and high-resolution detectors, MOSkinTM and microDiamond. The secondary aim is to investigate the influence of the inline magnetic field on the relative dose response of these detectors. Methods: The Australian MRI-linac has the unique feature that the linac is mounted on rails allowing for measurements to be performed at different magnetic field strengths while maintaining a constant source-to-surface distance (SSD). Percentage depth doses (PDD) were collected at SSD 1.82 m in a solid water phantom positioned in a low magnetic field region and then at isocenter of the MRI where the magnetic field is 1 T. Measurements for a range of field sizes were taken with the MOSkinTM, microDiamond, and Gafchromic® EBT3 film. The detectors’ relative responses at 1 T were compared to the near 0 T PDD beyond the region of electron contamination, that is, 20 mm depth. The near surface measurements inside the MRI bore were compared among the different detectors. Results: Skin dose in the MRI, as measured with the MOSkinTM, was 104.5% for 2.1 × 1.9 cm2, 185.6% for 6.1 × 5.8 cm2, 369.1% for 11.8 × 11.5 cm2, and 711.1% for 23.5 × 23 cm2. The detector measurements beyond the electron contamination region showed agreement between the relative response at 1 T and near 0 T. Film was in agreement with both detectors in this region further demonstrating their relative response is unaffected by the magnetic field. Conclusions: Experimental characterization of the high electron contamination at the surface was performed for a range of field sizes. The relative response of MOSkinTM and microDiamond detectors, beyond the electron contamination region, were confirmed to be unaffected by the 1-T inline magnetic field
    corecore