3 research outputs found
A novel method for classification of wine based on organic acids
Bio-electronic tongue was linked to artificial intelligence processing unit and used for classification of wines based on carboxylic acids levels, which were indirectly related to malolactic fermentation. The system employed amperometric biosensors with lactate oxidase, sarcosine oxidase, and fumarase/sarcosine oxidase in the three sensing channels. The results were processed using two statistical methods - principal component analysis (PCA) and self-organized maps (SOM) in order to classify 31 wine samples from the South Moravia region in the Czech Republic. Reference assays were carried out using the capillary electrophoresis (CE). The PCA patterns for both CE and biosensor data provided good correspondence in the clusters of samples. The SOM treatment provided a better resolution of the generated patterns of samples compared to PCA, the SOM derived clusters corresponded with the PCA classification only partially. The biosensor/SOM combination offers a novel procedure of wine classification
Tandem affinity purification of AtTERT reveals putative interaction partners of plant telomerase in vivo
The life cycle of telomerase involves dynamic and complex interactions between proteins within multiple macromolecular networks. Elucidation of these associations is a key to understanding the regulation of telomerase under diverse physiological and pathological conditions from telomerase biogenesis, through telomere recruitment and elongation, to its non-canonical activities outside of telomeres. We used tandem affinity purification coupled to mass spectrometry to build an interactome of the telomerase catalytic subunit AtTERT, using Arabidopsis thaliana suspension cultures. We then examined interactions occurring at the AtTERT N-terminus, which is thought to fold into a discrete domain connected to the rest of the molecule via a flexible linker. Bioinformatic analyses revealed that interaction partners of AtTERT have a range of molecular functions, a subset of which is specific to the network around its N-terminus. A significant number of proteins co-purifying with the N-terminal constructs have been implicated in cell cycle and developmental processes, as would be expected of bona fide regulatory interactions and we have confirmed experimentally the direct nature of selected interactions. To examine AtTERT protein-protein interactions from another perspective, we also analysed AtTERT interdomain contacts to test potential dimerization of AtTERT. In total, our results provide an insight into the composition and architecture of the plant telomerase complex and this will aid in delineating molecular mechanisms of telomerase functions
Physiological and proteomic approaches to evaluate the role of sterol binding in elicitin-induced resistance
International audienceCryptogein is a proteinaceous elicitor secreted by Phytophthora cryptogea that can induce resistance to P. parasitica in tobacco plants. On the basis of previous computer modelling experiments, by site-directed mutagenesis a series of cryptogein variants was prepared with altered abilities to bind sterols, phospholipids or both. The sterol binding and phospholipid transfer activities corresponded well with the previously reported structural data. Induction of the synthesis of reactive oxygen species (ROS) in tobacco cells in suspension and proteomic analysis of intercellular fluid changes in tobacco leaves triggered by these mutant proteins were not proportional to their ability to bind or transfer sterols and phospholipids. However, changes in the intercellular proteome corresponded to transcription levels of defence genes and resistance to P. parasitica and structure-prediction of mutants did not reveal any significant changes in protein structure. These results suggest, contrary to previous proposals, that the sterol-binding ability of cryptogein and its mutants, and the associated conformational change in the omega-loop, might not be principal factors in either ROS production or resistance induction. Nevertheless, the results support the importance of the omega-loop for the interaction of the protein with the high affinity binding site on the plasma membrane