415 research outputs found

    Chain Formation by Spin Pentamers in eta-Na9V14O35

    Full text link
    The nature of the gapped ground state in the quasi-one-dimensional compound eta-Na9V14O35 cannot easily be understood, if one takes into account the odd number of spins on each structural element. Combining the results of specific heat, susceptibility and electron spin resonance measurements we show that eta-Na9V14O35 exhibits a novel ground state where multi-spin objects build up a linear chain. These objects - pentamers - consist of five antiferromagnetically arranged spins with effective spin 1/2. Their spatial extent results in an exchange constant along the chain direction comparable to the one in the high-temperature state.Comment: 6 pages, 5 figure

    Memory Effect and Triplet Pairing Generation in the Superconducting Exchange Biased Co/CoOx/Cu41Ni59/Nb/Cu41Ni59 Layered Heterostructure

    Full text link
    We fabricated a nanolayered hybrid superconductor-ferromagnet spin-valve structure, the resistive state of which depends on the preceding magnetic field polarity. The effect is based on a strong exchange bias (about -2 kOe) on a diluted ferromagnetic copper-nickel alloy and generation of a long range odd in frequency triplet pairing component. The difference of high and low resistance states at zero magnetic field is 90% of the normal state resistance for a transport current of 250 {\mu}A and still around 42% for 10 {\mu}A. Both logic states of the structure do not require biasing fields or currents in the idle mode.Comment: 9 pages, 4 figures, Accepted to Applied Physics Letter

    New magnetic phase in metallic V_{2-y}O_3 close to the metal insulator transition

    Full text link
    We have observed two spin density wave (SDW) phases in hole doped metallic V_{2-y}O_3, one evolves from the other as a function of doping, pressure or temperature. They differ in their response to an external magnetic field, which can also induce a transition between them. The phase boundary between these two states in the temperature-, doping-, and pressure-dependent phase diagram has been determined by magnetization and magnetotransport measurements. One phase exists at high doping level and has already been described in the literature. The second phase is found in a small parameter range close to the boundary to the antiferromagnetic insulating phase (AFI). The quantum phase transitions between these states as a function of pressure and doping and the respective metamagnetic behavior observed in these phases are discussed in the light of structurally induced changes of the band structure.Comment: REVTeX, 8 pages, 12 EPS figures, submitted to PR

    Re-entrant superconductivity in Nb/Cu(1-x)Ni(x) bilayers

    Full text link
    We report on the first observation of a pronounced re-entrant superconductivity phenomenon in superconductor/ferromagnetic layered systems. The results were obtained using a superconductor/ferromagnetic-alloy bilayer of Nb/Cu(1-x)Ni(x). The superconducting transition temperature T_{c} drops sharply with increasing thickness d_{CuNi} of the ferromagnetic layer, until complete suppression of superconductivity is observed at d_{CuNi}= 4 nm. Increasing the Cu(1-x)Ni(x) layer thickness further, superconductivity reappears at d_{CuNi}=13 nm. Our experiments give evidence for the pairing function oscillations associated with a realization of the quasi-one dimensional Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) like state in the ferromagnetic layer.Comment: 3 pages, 3 figures, REVTEX4/twocolum

    Assessing the links between childhood trauma, C-reactive protein and response to antidepressant treatment in patients with affective disorders

    Get PDF
    Adverse Childhood Experiences (ACE) are a well-known risk-factor for depression. Additionally, (high-sensitive) C-reactive Protein (hsCRP) is elevated in subgroups of depressed patients and high following ACE. In this context the literature considers hsCRP and ACE to be associated with treatment resistant depression. With the data being heterogenous, this study aimed to explore the associations of ACE, hsCRP levels and response to antidepressant treatment in uni- and bipolar depression. N = 76 patients diagnosed with uni- or bipolar depression and N = 53 healthy controls were included. Treatment was over 6~weeks in an inpatient psychiatric setting within an observatory study design. Depressive symptoms were assessed by the Montgomery-Asberg Depression Rating Scale (MADRS), ACE were assessed by the Childhood Trauma Questionnaire (CTQ); the body-mass-index (BMI) and hsCRP were measured. HsCRP levels did not differ between the study population and the healthy controls. While the depressive symptoms decreased, the hsCRP levels increased. Sexual abuse was associated with significant higher and emotional abuse with lower levels of hsCRP after 6~weeks. The baseline hsCRP levels and the ACE subgroups did not~show significant associations with the treatment response in unipolar depressed patients. The long-lasting effects of specific forms of ACE may have relevant impact on inflammation, supporting hsCRP to be a suitable biomarker. With ACE and hsCRP not showing any significant associations with treatment response in the unipolar depressed subgroup, a more differentiate research concerning biomarkers and treatment regimens is needed when talking about treatment response

    Surface metal-insulator transition in the Hubbard model

    Full text link
    The correlation-driven metal-insulator (Mott) transition at a solid surface is studied within the Hubbard model for a semi-infinite lattice by means of the dynamical mean-field theory. The transition takes place at a unique critical strength of the interaction. Depending on the surface geometry, the interaction strength and the wave vector, we find one-electron excitations in the coherent part of the surface-projected metallic spectrum which are confined to two dimensions.Comment: LaTeX, 9 pages, 5 eps figures included, Phys. Rev. B (in press

    Acoustic radiation by vortex induced flexible wall vibration

    Get PDF
    Sound radiation due to unsteady interaction between an inviscid vortex (which models a turbulent eddy) and a finite length flexible boundary in a two-dimensional space is studied using potential theory and the matched asymptotic expansion technique. The Mach number of the vortex propagation is kept below 0.15. Results suggest that the monopole field created by the volumetric flow induced by the vibrating flexible boundary dominates the overall acoustic power radiation. The longitudinal dipole directly due to the transverse vortex acceleration is only important when the vortex is moving over the flexible boundary. The longitudinal dipole resulting from the boundary vibration gains slightly in importance in the strong vortex case, but the corresponding transverse dipole remains negligible for the cases considered in the present study. The two longitudinal dipoles give rise to biased radiation directivities on both sides of the flexible boundary. © 2005 Acoustical Society of America.published_or_final_versio
    corecore