410 research outputs found
Tensile strained membranes for cavity optomechanics
We investigate the optomechanical properties of tensile-strained ternary
InGaP nanomembranes grown on GaAs. This material system combines the benefits
of highly strained membranes based on stoichiometric silicon nitride, with the
unique properties of thin-film semiconductor single crystals, as previously
demonstrated with suspended GaAs. Here we employ lattice mismatch in epitaxial
growth to impart an intrinsic tensile strain to a monocrystalline thin film
(approximately 30 nm thick). These structures exhibit mechanical quality
factors of 2*10^6 or beyond at room temperature and 17 K for eigenfrequencies
up to 1 MHz, yielding Q*f products of 2*10^12 Hz for a tensile stress of ~170
MPa. Incorporating such membranes in a high finesse Fabry-Perot cavity, we
extract an upper limit to the total optical loss (including both absorption and
scatter) of 40 ppm at 1064 nm and room temperature. Further reductions of the
In content of this alloy will enable tensile stress levels of 1 GPa, with the
potential for a significant increase in the Q*f product, assuming no
deterioration in the mechanical loss at this composition and strain level. This
materials system is a promising candidate for the integration of strained
semiconductor membrane structures with low-loss semiconductor mirrors and for
realizing stacks of membranes for enhanced optomechanical coupling.Comment: 10 pages, 3 figure
Local Fuel Starvation Degradation of an Automotive PEMFC Full Size Stack
Special Issue: 23rd EFCF âLowâTemperature Fuel Cells, Electrolyzers, H2âProcessing Forumâ (EFCF2019
BCI-Based Navigation in Virtual and Real Environments
A Brain-Computer Interface (BCI) is a system that enables people to control an external device with their brain activity, without the need of any muscular activity. Researchers in the BCI field aim to develop applications to improve the quality of life of severely disabled patients, for whom a BCI can be a useful channel for interaction with their environment. Some of these systems are intended to control a mobile device (e. g. a wheelchair). Virtual Reality is a powerful tool that can provide the subjects with an opportunity to train and to test different applications in a safe environment. This technical review will focus on systems aimed at navigation, both in virtual and real environments.This work was partially supported by the Innovation, Science and Enterprise Council of the Junta de AndalucĂa (Spain), project P07-TIC-03310, the Spanish Ministry of Science and Innovation, project TEC 2011-26395 and by the European fund ERDF
Stationary optomechanical entanglement between a mechanical oscillator and its measurement apparatus
We provide an argument to infer stationary entanglement between light and a mechanical oscillator based on continuous measurement of light only. We propose an experimentally realizable scheme involving an optomechanical cavity driven by a resonant, continuous-wave field operating in the non-sideband-resolved regime. This corresponds to the conventional configuration of an optomechanical position or force sensor. We show analytically that entanglement between the mechanical oscillator and the output field of the optomechanical cavity can be inferred from the measurement of squeezing in (generalized) Einstein-Podolski-Rosen quadratures of suitable temporal modes of the stationary light field. Squeezing can reach levels of up to 50% of noise reduction below shot noise in the limit of large quantum cooperativity. Remarkably, entanglement persists even in the opposite limit of small cooperativity. Viewing the optomechanical device as a position sensor, entanglement between mechanics and light is an instance of object-apparatus entanglement predicted by quantum measurement theory
insights for ecological applications from the German Biodiversity Exploratories
Biodiversity, a multidimensional property of natural systems, is difficult to
quantify partly because of the multitude of indices proposed for this purpose.
Indices aim to describe general properties of communities that allow us to
compare different regions, taxa, and trophic levels. Therefore, they are of
fundamental importance for environmental monitoring and conservation, although
there is no consensus about which indices are more appropriate and
informative. We tested several common diversity indices in a range of simple
to complex statistical analyses in order to determine whether some were better
suited for certain analyses than others. We used data collected around the
focal plant Plantago lanceolata on 60 temperate grassland plots embedded in an
agricultural landscape to explore relationships between the common diversity
indices of species richness (S), Shannon's diversity (H'), Simpson's diversity
(D1), Simpson's dominance (D2), Simpson's evenness (E), and BergerâParker
dominance (BP). We calculated each of these indices for herbaceous plants,
arbuscular mycorrhizal fungi, aboveground arthropods, belowground insect
larvae, and P. lanceolata molecular and chemical diversity. Including these
trait-based measures of diversity allowed us to test whether or not they
behaved similarly to the better studied species diversity. We used path
analysis to determine whether compound indices detected more relationships
between diversities of different organisms and traits than more basic indices.
In the path models, more paths were significant when using H', even though all
models except that with E were equally reliable. This demonstrates that while
common diversity indices may appear interchangeable in simple analyses, when
considering complex interactions, the choice of index can profoundly alter the
interpretation of results. Data mining in order to identify the index
producing the most significant results should be avoided, but simultaneously
considering analyses using multiple indices can provide greater insight into
the interactions in a system
Revealing the last 13,500 years of environmental history from the multiproxy record of a mountain lake (Lago Enol, northern Iberian Peninsula)
This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s10933-009-9387-7.We present the Holocene sequence from Lago Enol (43°16â˛N, 4°59â˛W, 1,070 m a.s.l.), Cantabrian Mountains, northern Spain. A multiproxy analysis provided comprehensive information about regional humidity and temperature changes. The analysis included sedimentological descriptions, physical properties, organic carbon and carbonate content, mineralogy and geochemical composition together with biological proxies including diatom and ostracod assemblages. A detailed pollen study enabled reconstruction of variations in vegetation cover, which were interpreted in the context of climate changes and human impact. Four distinct stages were recognized for the last 13,500 years: (1) a cold and dry episode that includes the Younger Dryas event (13,500â11,600 cal. year BP); (2) a humid and warmer period characterizing the onset of the Holocene (11,600â8,700 cal. year BP); (3) a tendency toward a drier climate during the middle Holocene (8,700â4,650 cal. year BP); and (4) a return to humid conditions following landscape modification by human activity (pastoral activities, deforestation) in the late Holocene (4,650â2,200 cal. year BP). Superimposed on relatively stable landscape conditions (e.g. maintenance of well established forests), the typical environmental variability of the southern European region is observed at this site.The Spanish Inter-Ministry Commission of Science and
Technology (CICYT), the
Spanish National Parks agency, the European Commission, the
Spanish Ministry of Science, and the European
Social Fund
Revealing the last 13,500 years of environmental history from the multiproxy record of a mountain lake (Lago Enol, northern Iberian Peninsula)
This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s10933-009-9387-7.We present the Holocene sequence from Lago Enol (43°16â˛N, 4°59â˛W, 1,070 m a.s.l.), Cantabrian Mountains, northern Spain. A multiproxy analysis provided comprehensive information about regional humidity and temperature changes. The analysis included sedimentological descriptions, physical properties, organic carbon and carbonate content, mineralogy and geochemical composition together with biological proxies including diatom and ostracod assemblages. A detailed pollen study enabled reconstruction of variations in vegetation cover, which were interpreted in the context of climate changes and human impact. Four distinct stages were recognized for the last 13,500 years: (1) a cold and dry episode that includes the Younger Dryas event (13,500â11,600 cal. year BP); (2) a humid and warmer period characterizing the onset of the Holocene (11,600â8,700 cal. year BP); (3) a tendency toward a drier climate during the middle Holocene (8,700â4,650 cal. year BP); and (4) a return to humid conditions following landscape modification by human activity (pastoral activities, deforestation) in the late Holocene (4,650â2,200 cal. year BP). Superimposed on relatively stable landscape conditions (e.g. maintenance of well established forests), the typical environmental variability of the southern European region is observed at this site.The Spanish Inter-Ministry Commission of Science and
Technology (CICYT), the
Spanish National Parks agency, the European Commission, the
Spanish Ministry of Science, and the European
Social Fund
Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC
Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H âÎł Îł, H â Z Zâ â4l and H âW Wâ âlνlν. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of âs = 7 TeV and âs = 8 TeV, corresponding to an integrated luminosity of about 25 fbâ1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined ďŹts probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson
Standalone vertex ďŹnding in the ATLAS muon spectrometer
A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at âs = 7 TeV collected with the ATLAS detector at the LHC during 2011
- âŚ