56 research outputs found

    NRF2: A crucial regulator for mitochondrial metabolic shift and prostate cancer progression

    Get PDF
    Metabolic alterations are a common survival mechanism for prostate cancer progression and therapy resistance. Oxidative stress in the cellular and tumor microenvironment dictates metabolic switching in the cancer cells to adopt, prosper and escape therapeutic stress. Therefore, regulation of oxidative stress in tumor cells and in the tumor-microenvironment may enhance the action of conventional anticancer therapies. NRF2 is the master regulator for oxidative stress management. However, the overall oxidative stress varies with PCa clinical stage, metabolic state and therapy used for the cancer. In agreement, the blanket use of NRF2 inducers or inhibitors along with anticancer therapies cause adverse effects in some preclinical cancer models. In this review, we have summarized the levels of oxidative stress, metabolic preferences and NRF2 activity in the different stages of prostate cancer. We also propose condition specific ways to use NRF2 inducers or inhibitors along with conventional prostate cancer therapies. The significance of this review is not only to provide a detailed understanding of the mechanism of action of NRF2 to regulate oxidative stress-mediated metabolic switching by prostate cancer cells to escape the radiation, chemo, or hormonal therapies, and to grow aggressively, but also to provide a potential therapeutic method to control aggressive prostate cancer growth by stage specific proper use of NRF2 regulators

    Regulation of surfactant protein D in the rodent prostate

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Surfactant protein D (SP-D) is an innate immune protein that is present in mucosal lined surfaces throughout the human body, including the male reproductive tract. In the present study, we characterized the regulation of SP-D expression in the mouse and rat prostate.</p> <p>Methods</p> <p>Real time reverse transcriptase polymerase chain reaction (RT-PCR) and immunostaining were used to characterize SP-D mRNA and protein in the mouse male reproductive tract. In order to evaluate the effects of testosterone on SP-D gene expression, we measured SP-D mRNA levels via real time RT-PCR in prostates from sham-castrated mice and castrated mice. In addition, we used a rat prostatitis model in which Escherichia coli was injected into the prostate in vivo to determine if infection influences SP-D protein levels in the prostate.</p> <p>Results</p> <p>We found that SP-D mRNA and protein are present throughout the mouse male reproductive tract, including in the prostate. We determined that castration increases prostate SP-D mRNA levels (~7 fold) when compared to levels in sham-castrated animals. Finally, we demonstrated that infection in the prostate results in a significant increase in SP-D content 24 and 48 hours post-infection.</p> <p>Conclusion</p> <p>Our results suggest that infection and androgens regulate SP-D in the prostate.</p

    BuOE and tBHQ Reduces Growth and Viability of Castrate-Resistant Prostate Cancer

    Get PDF
    Prostate cancer is the second leading cause of cancer-related death in men. 10-20% of prostate cancer patients develop castration-resistant prostate cancer (CRPC) The median survival for CRPC patients is 14 months following diagnosis1. CRPC can spread to local tissues like the bladder, lymph nodes, and rectum but will also reach bone through distant metastasis. The metastasis of CRPC proves difficult for clinicians to treat. Redox active compounds can reduce growth and induce death of cancerous cells by the creation of ROS, which cannot be broken down by cancerous cells. This allows treatments like radiation and chemotherapy to be more effective in killing cancer.https://digitalcommons.unmc.edu/surp2022/1006/thumbnail.jp

    Nanoformulation of the Superoxide Dismutase Mimic, MnTnBuOE-2-PyP5+, Prevents its Acute Hypotensive Response

    Get PDF
    Scavenging superoxide (O2•-) via overexpression of superoxide dismutase (SOD) or administration of SOD mimics improves outcomes in multiple experimental models of human disease including cardiovascular disease, neurodegeneration, and cancer. While few SOD mimics have transitioned to clinical trials, MnTnBuOE-2-PyP5+ (BuOE), a manganese porphyrin SOD mimic, is currently in clinical trials as a radioprotector for cancer patients; thus, providing hope for the use of SOD mimics in the clinical setting. However, BuOE transiently alters cardiovascular function including a significant and precipitous decrease in blood pressure. To limit BuOE\u27s acute hypotensive action, we developed a mesoporous silica nanoparticle and lipid bilayer nanoformulation of BuOE (nanoBuOE) that allows for slow and sustained release of the drug. Herein, we tested the hypothesis that unlike native BuOE, nanoBuOE does not induce an acute hypotensive response, as the nanoformulation prevents BuOE from scavenging O2•- while the drug is still encapsulated in the formulation. We report that intact nanoBuOE does not effectively scavenge O2•-, whereas BuOE released from the nanoformulation does retain SOD-like activity. Further, in mice, native BuOE, but not nanoBuOE, rapidly, acutely, and significantly decreases blood pressure, as measured by radiotelemetry. To begin exploring the physiological mechanism by which native BuOE acutely decreases blood pressure, we recorded renal sympathetic nerve activity (RSNA) in rats. RSNA significantly decreased immediately following intravenous injection of BuOE, but not nanoBuOE. These data indicate that nanoformulation of BuOE, a SOD mimic currently in clinical trials in cancer patients, prevents BuOE\u27s negative side effects on blood pressure homeostasis

    Sympathoinhibition and vasodilation contribute to the acute hypotensive response of the superoxide dismutase mimic, MnTnBuOE-2-PyP5+, in hypertensive animals

    Get PDF
    The pathogenesis of hypertension has been linked to excessive levels of reactive oxygen species (ROS), particularly superoxide (O2•−), in multiple tissues and organ systems. Overexpression of superoxide dismutase (SOD) to scavenge O2•− has been shown to decrease blood pressure in hypertensive animals. We have previously shown that MnTnBuOE-2-PyP5+ (BuOE), a manganese porphyrin SOD mimic currently in clinical trials as a normal tissue protector for cancer patients undergoing radiation therapy, can scavenge O2•− and acutely decrease normotensive blood pressures. Herein, we hypothesized that BuOE decreases hypertensive blood pressures. Using angiotensin II (AngII)-hypertensive mice, we demonstrate that BuOE administered both intraperitoneally and intravenously (IV) acutely decreases elevated blood pressure. Further investigation using renal sympathetic nerve recordings in spontaneously hypertensive rats (SHRs) reveals that immediately following IV injection of BuOE, blood pressure and renal sympathetic nerve activity (RSNA) decrease. BuOE also induces dose-dependent vasodilation of femoral arteries from AngII-hypertensive mice, a response that is mediated, at least in part, by nitric oxide, as demonstrated by ex vivo video myography. We confirmed this vasodilation in vivo using doppler imaging of the superior mesenteric artery in AngII-hypertensive mice. Together, these data demonstrate that BuOE acutely decreases RSNA and induces vasodilation, which likely contribute to its ability to rapidly decrease hypertensive blood pressure

    An Integrative Genomic and Epigenomic Approach for the Study of Transcriptional Regulation

    Get PDF
    The molecular heterogeneity of acute leukemias and other tumors constitutes a major obstacle towards understanding disease pathogenesis and developing new targeted-therapies. Aberrant gene regulation is a hallmark of cancer and plays a central role in determining tumor phenotype. We predicted that integration of different genome-wide epigenetic regulatory marks along with gene expression levels would provide greater power in capturing biological differences between leukemia subtypes. Gene expression, cytosine methylation and histone H3 lysine 9 (H3K9) acetylation were measured using high-density oligonucleotide microarrays in primary human acute myeloid leukemia (AML) and acute lymphocytic leukemia (ALL) specimens. We found that DNA methylation and H3K9 acetylation distinguished these leukemias of distinct cell lineage, as expected, but that an integrative analysis combining the information from each platform revealed hundreds of additional differentially expressed genes that were missed by gene expression arrays alone. This integrated analysis also enhanced the detection and statistical significance of biological pathways dysregulated in AML and ALL. Integrative epigenomic studies are thus feasible using clinical samples and provide superior detection of aberrant transcriptional programming than single-platform microarray studies

    Superoxide Dismutases (SODs) and SOD Mimetics

    No full text
    Superoxide dismutase (SOD) is the only known enzyme to directly scavenge a free radical. [...

    Reactive Oxygen Species Drive Epigenetic Changes in Radiation-Induced Fibrosis

    No full text
    Radiation-induced fibrosis (RIF) develops months to years after initial radiation exposure. RIF occurs when normal fibroblasts differentiate into myofibroblasts and lay down aberrant amounts of extracellular matrix proteins. One of the main drivers for developing RIF is reactive oxygen species (ROS) generated immediately after radiation exposure. Generation of ROS is known to induce epigenetic changes and cause differentiation of fibroblasts to myofibroblasts. Several antioxidant compounds have been shown to prevent radiation-induced epigenetic changes and the development of RIF. Therefore, reviewing the ROS-linked epigenetic changes in irradiated fibroblast cells is essential to understand the development and prevention of RIF

    MnTE-2-PyP Suppresses Prostate Cancer Cell Growth via H2O2 Production

    No full text
    Prostate cancer patients are often treated with radiotherapy. MnTE-2-PyP, a superoxide dismutase (SOD) mimic, is a known radioprotector of normal tissues. Our recent work demonstrated that MnTE-2-PyP also inhibits prostate cancer progression with radiotherapy; however, the mechanisms remain unclear. In this study, we identified that MnTE-2-PyP-induced intracellular H2O2 levels are critical in inhibiting the growth of PC3 and LNCaP cells, but the increased H2O2 levels affected the two cancer cells differently. In PC3 cells, many proteins were thiol oxidized with MnTE-2-PyP treatment, including Ser/Thr protein phosphatase 1 beta catalytic subunit (PP1CB). This resulted in reduced PP1CB activity; however, overall cell cycle progression was not altered, so this is not the main mechanism of PC3 cell growth inhibition. High H2O2 levels by MnTE-2-PyP treatment induced nuclear fragmentation, which could be synergistically enhanced with radiotherapy. In LNCaP cells, thiol oxidation by MnTE-2-PyP treatment was not observed previously and, similarly to PC3 cells, there was no effect of MnTE-2-PyP treatment on cell cycle progression. However, in LNCaP cells, MnTE-2-PyP caused an increase in low RNA population and sub-G1 population of cells, which indicates that MnTE-2-PyP treatment may cause cellular quiescence or direct cancer cell death. The protein oxidative modifications and mitotic catastrophes caused by MnTE-2-PyP may be the major contributors to cell growth inhibition in PC3 cells, while in LNCaP cells, tumor cell quiescence or cell death appears to be major factors in MnTE-2-PyP-induced growth inhibition
    • …
    corecore