653 research outputs found
Mean flow stability analysis of oscillating jet experiments
Linear stability analysis is applied to the mean flow of an oscillating round
jet with the aim to investigate the robustness and accuracy of mean flow
stability wave models. The jet's axisymmetric mode is excited at the nozzle lip
through a sinusoidal modulation of the flow rate at amplitudes ranging from 0.1
% to 100 %. The instantaneous flow field is measured via particle image
velocimetry and decomposed into a mean and periodic part utilizing proper
orthogonal decomposition. Local linear stability analysis is applied to the
measured mean flow adopting a weakly nonparallel flow approach. The resulting
global perturbation field is carefully compared to the measurements in terms of
spatial growth rate, phase velocity, and phase and amplitude distribution. It
is shown that the stability wave model accurately predicts the excited flow
oscillations during their entire growth phase and during a large part of their
decay phase. The stability wave model applies over a wide range of forcing
amplitudes, showing no pronounced sensitivity to the strength of nonlinear
saturation. The upstream displacement of the neutral point and the successive
reduction of gain with increasing forcing amplitude is very well captured by
the stability wave model. At very strong forcing (>40%), the flow becomes
essentially stable to the axisymmetric mode. For these extreme cases, the
prediction deteriorates from the measurements due to an interaction of the
forced wave with the geometric confinement of the nozzle. Moreover, the model
fails far downstream in a region where energy is transferred from the
oscillation back to the mean flow. This study supports previously conducted
mean flow stability analysis of self-excited flow oscillations in the cylinder
wake and in the vortex breakdown bubble and extends the methodology to
externally forced convectively unstable flows.Comment: submitted to the Journal of Fluid Mechanic
Vortex Breakdown in a Swirling Jet with Axial Forcing
A swirling jet has been generated in water by passing the fluid through a rotating honeycomb and discharging it into a water tank. Experiments were conducted at 3000 < Re < 7000 and 1.15 < S < 1.5. In addition, axial periodic perturbations were applied in order to excite the shear layer by an axisymmetric mode m=0. The amplitudes of the forcing were in the range 4% < A < 44%. Quantitative measurements were carried out by using STEREO-PIV. Experiments show that at higher Reynolds numbers the vortex breakdown does not occur abruptly as often mentioned in the literature. Instead, all mean quantities which characterize the vortex breakdown show a continuous change with increasing swirl. The high turbulence level may explain the differences to former studies. Velocity contours of the cross-sectional view indicate azimuthal modes that decrease from m=4 close to the nozzle to m=2 near the vortex breakdown. Phase-locked data show that the location of vortex breakdown alternates with the forcing frequency without a significant mean displacement, whereas for a certain combination of frequency and amplitude it sheds downstream while losing its intensity
Spectral proper orthogonal decomposition
The identification of coherent structures from experimental or numerical data
is an essential task when conducting research in fluid dynamics. This typically
involves the construction of an empirical mode base that appropriately captures
the dominant flow structures. The most prominent candidates are the
energy-ranked proper orthogonal decomposition (POD) and the frequency ranked
Fourier decomposition and dynamic mode decomposition (DMD). However, these
methods fail when the relevant coherent structures occur at low energies or at
multiple frequencies, which is often the case. To overcome the deficit of these
"rigid" approaches, we propose a new method termed Spectral Proper Orthogonal
Decomposition (SPOD). It is based on classical POD and it can be applied to
spatially and temporally resolved data. The new method involves an additional
temporal constraint that enables a clear separation of phenomena that occur at
multiple frequencies and energies. SPOD allows for a continuous shifting from
the energetically optimal POD to the spectrally pure Fourier decomposition by
changing a single parameter. In this article, SPOD is motivated from
phenomenological considerations of the POD autocorrelation matrix and justified
from dynamical system theory. The new method is further applied to three sets
of PIV measurements of flows from very different engineering problems. We
consider the flow of a swirl-stabilized combustor, the wake of an airfoil with
a Gurney flap, and the flow field of the sweeping jet behind a fluidic
oscillator. For these examples, the commonly used methods fail to assign the
relevant coherent structures to single modes. The SPOD, however, achieves a
proper separation of spatially and temporally coherent structures, which are
either hidden in stochastic turbulent fluctuations or spread over a wide
frequency range
Excitation of the precessing vortex core by active flow control to suppress thermoacoustic instabilities in swirl flames
In this study, we apply periodic flow excitation of the precessing vortex core at the centerbody of a swirl-stabilized combustor to investigate the impact of the precessing vortex core on flame shape, flame dynamics, and especially thermoacoustic instabilities. The current control scheme is based on results from linear stability theory that determine the precessing vortex core as a global hydrodynamic instability with its maximum receptivity to open-loop actuation located near the center of the combustor inlet. The control concept is first validated at isothermal conditions. This is of utmost importance for the proceeding studies that focus on the exclusive impact of the precessing vortex core on the combustion dynamics. Subsequently, the control is applied to reacting conditions considering lean premixed turbulent swirl flames. Considering thermoacoustically stable flames first, it is shown that the actuation locks onto the precessing vortex core when it is naturally present in the flame, which allows the precessing vortex core frequency to be controlled. Moreover, the control allows the precessing vortex core to be excited in conditions where it is naturally suppressed by the flame, which yields a very effective possibility to control the precessing vortex core amplitude. The control is then applied to thermoacoustically unstable conditions. Considering perfectly premixed flames first, it is shown that the precessing vortex core actuation has only a minor effect on the thermoacoustic oscillation amplitude. However, we observe a continuous increase of the thermoacoustic frequency with increasing precessing vortex core amplitude due to an upstream displacement of the mean flame and resulting reduction of the convective time delay. Considering partially premixed flames, the precessing vortex core actuation shows a dramatic reduction of the thermoacoustic oscillation amplitude. In consideration of the perfectly premixed cases, we suspect that this is caused by the precessing vortex core-enhanced mixing of equivalence ratio fluctuations at the flame root and due to a reduction of time delays due to mean flame displacement.DFG, 414044773, Open Access Publizieren 2019 - 2020 / Technische UniversitÀt Berli
On the impact of swirl on the growth of coherent structures
Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugÀnglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Spatial linear stability analysis is applied to the mean flow of a turbulent swirling jet at swirl intensities below the onset of vortex breakdown. The aim of this work is to predict the dominant coherent flow structure, their driving instabilities and how they are affected by swirl. At the nozzle exit, the swirling jet promotes shear instabilities and, less unstable, centrifugal instabilities. The latter stabilize shortly downstream of the nozzle, contributing very little to the formation of coherent structures. The shear mode remains unstable throughout generating coherent structures that scale with the axial shear-layer thickness. The most amplified mode in the nearfield is a co-winding double-helical mode rotating slowly in counter-direction to the swirl. This gives rise to the formation of slowly rotating and stationary large-scale coherent structures, which explains the asymmetries in the mean flows often encountered in swirling jet experiments. The co-winding single-helical mode at high rotation rate dominates the farfield of the swirling jet in replacement of the co- and counter-winding bending modes dominating the non-swirling jet. Moreover, swirl is found to significantly affect the streamwise phase velocity of the helical modes rendering this flow as highly dispersive and insensitive to intermodal interactions, which explains the absence of vortex pairing observed in previous investigations. The stability analysis is validated through hot-wire measurements of the flow excited at a single helical mode and of the flow perturbed by a time- and space-discrete pulse. The experimental results confirm the predicted mode selection and corresponding streamwise growth rates and phase velocities
Endothelial cells as vascular salt sensors
Dietary sodium and potassium contribute to the control of the blood pressure. Endothelial cells are targets for aldosterone, which activates the apically located epithelial sodium channels. The activity of these channels is negatively correlated with the release of nitric oxide (NO) and determines endothelial function. A mediating factor between channel activity and NO release is the mechanical stiffness of the cell's plasma membrane, including the submembranous actin network (the cell's âshellâ). Changes in plasma sodium and potassium, within the physiological range, regulate the viscosity of this shell and thus control the shear-stress-dependent activity of the endothelial NO synthase located in the shell's âpocketsâ (caveolae). High plasma sodium gelates the shell of the endothelial cell, whereas the shell is fluidized by high potassium. Accordingly, this concept envisages that communications between extracellular ions and intracellular enzymes occur at the plasma membrane barrier, whereas 90% of the total cell mass remains uninvolved in these changes. Endothelial cells are highly sensitive to extracellular sodium and potassium. This sensitivity may serve as a physiological feedback mechanism to regulate local blood flow. It may also have pathophysiological relevance when sodium/potassium homeostasis is disturbed
- âŠ