20 research outputs found

    Plasma Activated Synthesis of Macromolecular Compound

    Get PDF
    The paper is devoted to study of the plasma-activated synthesis of organic compounds with optically activity. Synthesis was carried out in plasma-liquid system with a rotating gliding discharge submerged in a liquid. The initial reagents of synthesis were ethanol, ammonia, and CO2. The possibility of the influence of the electric field direction on the optical activity of the products of plasma-activated synthesis is shown

    DNA Oligonucleotides as Antivirals and Vaccine Constituents against SARS Coronaviruses: A Prospective Tool for Immune System Tuning

    No full text
    The SARS-CoV-2 pandemic has demonstrated the need to create highly effective antivirals and vaccines against various RNA viruses, including SARS coronaviruses. This paper provides a short review of innovative strategies in the development of antivirals and vaccines against SARS coronaviruses, with a focus on antisense antivirals, oligonucleotide adjuvants in vaccines, and oligonucleotide vaccines. Well-developed viral genomic databases create new opportunities for the development of innovative vaccines and antivirals using a post-genomic platform. The most effective vaccines against SARS coronaviruses are those able to form highly effective memory cells for both humoral and cellular immunity. The most effective antivirals need to efficiently stop viral replication without side effects. Oligonucleotide antivirals and vaccines can resist the rapidly changing genomic sequences of SARS coronaviruses using conserved regions of their genomes to generate a long-term immune response. Oligonucleotides have been used as excellent adjuvants for decades, and increasing data show that oligonucleotides could serve as antisense antivirals and antigens in vaccine formulations, becoming a prospective tool for immune system tuning

    New Advances and Perspectives of Influenza Prevention: Current State of the Art

    No full text
    The modern world, swaddled in the benefits of civilization, has fostered the development of science and the introduction of products of technological progress. This has allowed serious individual health problems, including those associated with viral diseases, to become targets for prophylaxis, treatment, and even cure. Human immunodeficiency viruses, hepatitis viruses, coronaviruses, and influenza viruses are among the most disturbing infectious agents in the human experience. Influenza appears to be one of the oldest viruses known to man; these viruses were among the first to cause major epidemics and pandemics in human history, collectively causing up to 0.5 million deaths worldwide each year. The main problem in the fight against influenza viruses is that they mutate constantly, which leads to molecular changes in antigens, including outer membrane glycoproteins, which play a critical role in the creation of modern vaccines. Due to the constant microevolution of the virus, influenza vaccine formulas have to be reviewed and improved every year. Today, flu vaccines represent an eternal molecular race between a person and a virus, which neither entity seems likely to win

    DNA insecticides: The effect of concentration on non-target plant organisms such as wheat (Triticum aestivum L.)

    No full text
    The excessive use of pesticides is a problem in most parts of the world today because of their broad and unspecific target range that is considerably harmful. The accumulation of several chemical insecticide residues based on chlorpyrifos-methyl, organochlorine, different isomers of HCH, DDT etc., in Triticum aestivum L. plants can be dangerous. Hence, there is an urgent need to develop potential and safer alternative measures. Wheat (Triticum aestivum L.) is a major cereal crop grown and used for food, animal feed, beverages and furniture accessories in most parts of the world. It also serves as a host to various insect pests. Our previous studies showed the insecticidal potency and specificity of short ssDNA oligonucleotides from the inhibitor of apoptosis (IAP-2 and IAP-3) genes of Lymantria dispar multicapsid nuclear polyhedrosis virus (LdMNPV) against gypsy moth (L. dispar) larvae, a possible insect pest of non-host plants like wheat. Consequently, the present study analyzes the effects of ssDNA oligonucleotides used as DNA insecticides on wheat (T. aestivum) plant biomass, plant organs and some biochemical parameters as a marker of the safety margin on non-target organisms. The results obtained on plant biomass showed that groups treated with ssDNA oligonucleotides at concentrations of 0.01 pmol · μl-1, 0.1 pmol · μl-1 and 1 pmol · μl-1 varied in comparison with the control group, but remained harmless to plant growth and development, while the treatment concentration of 0.001 pmol · μl-1 did not affect the plant biomass. The glucose, protein and phosphorous biochemical parameters, analyzed after 21 days, showed that the ssDNA oligonucleotides used were equally safe. The data obtained for the plant organs (leaves and root lengths) indicate that the phenomenon of DNA insecticides can be further studied and developed for plant protection while improving the growth of plant organs even for a non-target organism such as wheat T. aestivum plants. © 2019 Polish Academy of Sciences. All rights reserved

    A breakthrough in the efficiency of contact DNA insecticides: rapid high mortality rates in the sap-sucking insects Dynaspidiotus britannicus Comstock and Unaspis euonymi Newstead

    No full text
    In this short communication describing experiments carried out on the larvae of two insects, Unaspis euonymi Comstock (feeding on Euonymus japonicus Thunb.) and Dynaspidiotus britannicus Newstead (feeding on Laurus nobilis L.), we evaluate for the first time the efficiency of using DNA insecticides in the control of sap-sucking insects, including armored scale insects. Over a period of 10 days, high insect mortality was detected in both U. euonymi and D. britannicus, accompanied by a significant decrease in the concentration of target RNAs. At the same time, no visible changes were observed when the leaves of the host plants were subjected to treatment with DNA insecticides for one month. The results show the high efficiency of DNA insecticides used against hemipteran insect pests. It is noteworthy that the high efficiency of DNA insecticides and their low cost in comparison with RNA preparations provides a safe and extremely promising potential vehicle for the control of sap-sucking insects

    A primary attempt of Leptinotarsa decemlineata control using contact DNA insecticide based on short antisense oligonucleotide of its CYP6B gene

    No full text
    Effective control of Leptinotarsa decemlineata remains an urgent problem for agriculture worldwide. Minimization of the use of non-selective neonicotinoid insecticides, such as thiomethoxam, is an actual vector of development of potato cultivation. In this rapid communication, we show the prospect of the topical use of short unmodified antisense fragment of L. decemlineata CYP6B gene as a DNA insecticide. Investigated parameters, namely, number of larvae per plant, aboveground biomass, yield and number of potatoes produced per plant indicate the possibility of this post-genomic approach as a safe and effective method of L. decemlineata control
    corecore