238 research outputs found
Die Entwicklung der Porträtmalerei in Russland am Ende des 18. Jahrhunderts am Beispiel der Maler Johann Baptist Lampi d.Ă. und Vladimir Lukich Borowikowski
In meiner Arbeit habe ich versucht, den Einfluss der Sankt Petersburger Schaffensperiode von Johann Baptist Lampi d. Ă. auf das Werk von Vladimir Lukich Borowikowski sowie den Beitrag
beider Maler zur russischen Porträtmalerei Ende des 18. Jahrhunderts darzustellen und zu beurteilen
Unlocking thermal comfort in transitional spaces: A field study in three Italian shopping centres
Shopping centres are commonly laid out as small individual stores connected by transitional spaces. Setpoint temperatures used to control transitional spaces are normally the same as in traditional indoor environments despite substantial differences in use, time of permanence and users' needs. Currently, there are no comfort guidelines for transitional spaces and the literature lacks relevant studies on the topic. There is an untapped potential for energy savings and improved indoor environmental quality. The main objective of this work is to evaluate the suitability of Fanger's comfort model and adaptive comfort model for transitional spaces. We assessed users' thermal perception and potential impacting factors in three Italian shopping centres. 724 customers were interviewed on their thermal comfort, thermal sensation, thermal preference, and clothing level while experiencing the transitional space. In addition, the thermal environment at the interview locations (dry-bulb temperature, globe temperature, relative humidity, and air speed at different levels) and the outdoor temperature were monitored. The study demonstrated that Fanger's model and the adaptive comfort model are not suitable for transitional spaces. Customers were inclined to adapt to a much wider range of indoor environmental conditions. An operative temperature of up to 27.5 °C was still deemed comfortable by more than 80% of the customers. These results unlock a large potential for energy savings and pave the way for passive solutions such as natural ventilation
Advancing and demonstrating the Impact Indices method to screen the sensitivity of building energy use to occupant behaviour
A critical gap between the occupant behaviour research field and the building engineering practice limits the integration of occupant-centric strategies into simulation-aided building design and operation. Closing this gap would contribute to the implementation of strategies that improve the occupantsâ well-being while reducing the buildingsâ environmental footprint. In this view, it is urgent to develop guidelines, standardised methods, and supporting tools that facilitate the integration of advanced occupant behaviour models into the simulation studies. One important step that needs to be fully integrated into the simulation workflow is the identification of influential and non-influential occupant behaviour aspects for a given simulation problem. Accordingly, this article advances and demonstrates the application of the Impact Indices method, a fast and efficient method for screening the potential impact of occupant behaviour on the heating and cooling demand. Specifically, the method now allows the calculation of Impact Indices quantifying the sensitivity of building energy use to occupancy, lighting use, plug-load appliances use, and blind operation at any spatial and temporal resolution. Hence, users can apply it in more detailed heating and cooling scenarios without losing information. Furthermore, they can identify which components in building design and operation require more sophisticated occupant behaviour models. An office building is used as a real case study to illustrate the application of the method and asses its performance against a one-factor-at-a-time sensitivity analysis. The Impact Indices method indicates that occupancy, lighting use and plug-load appliances have the greatest impact on the annual cooling demand of the studied office building; blind operation is influential only in the west and south façades of the building. Finally, potential applications of the method in building design and operation practice are discussed
SreA-mediated iron regulation in Aspergillus fumigatus
Aspergillus fumigatus, the most common airborne fungal pathogen of humans, employs two high-affinity iron uptake systems: iron uptake mediated by the extracellular siderophore triacetylfusarinine C and reductive iron assimilation. Furthermore, A. fumigatus utilizes two intracellular siderophores, ferricrocin and hydroxyferricrocin, to store iron. Siderophore biosynthesis, which is essential for virulence, is repressed by iron. Here we show that this control is mediated by the GATA factor SreA. During iron-replete conditions, SreA deficiency partially derepressed synthesis of triacetylfusarinine C and uptake of iron resulting in increased cellular accumulation of both iron and ferricrocin. Genome-wide DNA microarray analysis identified 49 genes that are repressed by iron in an SreA-dependent manner. This gene set, termed SreA regulon, includes all known genes involved in iron acquisition, putative novel siderophore biosynthetic genes, and also genes not directly linked to iron metabolism. SreA deficiency also caused upregulation of iron-dependent and antioxidative pathways, probably due to the increased iron content and iron-mediated oxidative stress. Consistently, the sreA disruption mutant displayed increased sensitivity to iron, menadion and phleomycin but retained wild-type virulence in a mouse model. As all detrimental effects of sreA disruption are restricted to iron-replete conditions these data underscore that A. fumigatus faces iron-depleted conditions during infection
Smart energy systems applied at urban level: the case of the municipality of Bressanone-Brixen
The present paper focuses on the energy system of the municipality of Bressanone-Brixen, located in the North of Italy. The aim of this paper is to investigate various possible energy scenarios for this case study in order to improve the overall efficiency of the system. The different scenarios include high penetration of photovoltaics at urban level, considering the maximum rooftop PV potential of the local area. Different solutions have been analyzed in order to study the handling of the consequent excess of electricity production. Electric storage and a solution combining heat pumps and thermal storage have been evaluated to maximize the local use of the generated electricity. A deterministic approach (without the use of an optimization algorithm) and a heuristic optimization approach have been applied to evaluate the different possible configurations. The present analysis can be of interest for other cities in a mountain environment where the production from renewables is limited by orographic constraints, energy consumption per capita is higher and stronger resiliency to climate change is needed
Multi-objective optimization algorithm coupled to EnergyPLAN software: The EPLANopt model
The planning of energy systems with high penetration of renewables is becoming more and more important due to environmental and security issues. On the other hand, high shares of renewables require proper grid integration strategies. In order to overcome these obstacles, the diversification of renewable energy technologies, programmable or not, coupled with different types of storage, daily and seasonal, is recommended. The optimization of the different energy sources is a multi-objective optimization problem because it concerns economical, technical and environmental aspects. The aim of this study is to present the model EPLANopt, developed by Eurac Research, which couples the deterministic simulation model EnergyPLAN developed by Aalborg University with a Multi-Objective Evolutionary Algorithm built on the Python library DEAP. The test case is the energy system of South Tyrol, for which results obtained through this methodology are presented. Particular attention is devoted to the analysis of energy efficiency in buildings. A curve representing the marginal costs of the different energy efficiency strategies versus the annual energy saving is applied to the model through an external Python script. This curve describes the energy efficiency costs for different types of buildings depending on construction period and location
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
Performance and Operation of the CMS Electromagnetic Calorimeter
The operation and general performance of the CMS electromagnetic calorimeter
using cosmic-ray muons are described. These muons were recorded after the
closure of the CMS detector in late 2008. The calorimeter is made of lead
tungstate crystals and the overall status of the 75848 channels corresponding
to the barrel and endcap detectors is reported. The stability of crucial
operational parameters, such as high voltage, temperature and electronic noise,
is summarised and the performance of the light monitoring system is presented
Ergothioneine Biosynthesis and Functionality in the Opportunistic Fungal Pathogen, Aspergillus fumigatus.
Ergothioneine (EGT; 2-mercaptohistidine trimethylbetaine) is a trimethylated and sulphurised histidine derivative which exhibits antioxidant properties. Here we report that deletion of Aspergillus fumigatus egtA (AFUA_2G15650), which encodes a trimodular enzyme, abrogated EGT biosynthesis in this opportunistic pathogen. EGT biosynthetic deficiency in A. fumigatus significantly reduced resistance to elevated H2O2 and menadione, respectively, impaired gliotoxin production and resulted in attenuated conidiation. Quantitative proteomic analysis revealed substantial proteomic remodelling in ÎegtA compared to wild-type under both basal and ROS conditions, whereby the abundance of 290 proteins was altered. Specifically, the reciprocal differential abundance of cystathionine Îł-synthase and β-lyase, respectively, influenced cystathionine availability to effect EGT biosynthesis. A combined deficiency in EGT biosynthesis and the oxidative stress response regulator Yap1, which led to extreme oxidative stress susceptibility, decreased resistance to heavy metals and production of the extracellular siderophore triacetylfusarinine C and increased accumulation of the intracellular siderophore ferricrocin. EGT dissipated H2O2 in vitro, and elevated intracellular GSH levels accompanied abrogation of EGT biosynthesis. EGT deficiency only decreased resistance to high H2O2 levels which suggests functionality as an auxiliary antioxidant, required for growth at elevated oxidative stress conditions. Combined, these data reveal new interactions between cellular redox homeostasis, secondary metabolism and metal ion homeostasis
- âŚ