8 research outputs found
Recommended from our members
Novel salted anionic-cationic polymethacrylate polymer blends for sustained release of acidic and basic drugs
Background: Since a unique matrix tablet formulation that independently controls the release of various drug types is in a great demand, the objective of this research was to develop a sustained release matrix tablet as a universal dosage form using a binary mixture of the salt forms of Eudragit polymers rather than their interpolyelectrolyte complexes.
Methods: Tablets were prepared by wet granulation and compressed at different compression forces, depending on drug type. Dissolution tests were conducted using USP XXII rotating paddle apparatus at 50 rpm at 37°C in consecutive pH stages.
Results: Tablets containing Ibuprofen (IB) as a model acidic drug and Metronidazole (MD) as a model basic drug showed controlled/sustained release behavior. For IB tablets containing 80% Ibuprofen and 5% (w/w) polymeric combination; the time for 50% of the drug release was about 24 hours compared to 8.5 hours for plain tablets containing 80% IB. In case of MD, the drug release extended to about 7 hours for tablets containing 80% MD and 5% (w/w) polymeric combination, compared to about 1 hour for plain tablets containing 80% MD. In terms of extending the release of medications, the dissolution profiles of the tablets containing polymeric salts forms were found to be statistically superior to tablets prepared by direct compression of the polymers in their powdered base forms, and superior to tablets containing the same polymers granulated using isopropyl alcohol.
Conclusion: The findings indicated the significance of combining the polymers in their salt forms in controlling the release of various drug types from matrices
Recommended from our members
The dissolution enhancement of piroxicam in its physical mixtures and solid dispersion formulations using gluconolactone and glucosamine hydrochloride as potential carriers
The solid dispersion technique is one of the most effective methods for improving the dissolution rate of poorly water-soluble drugs; however this is reliant on a suitable carrier and solvent being selected. The work presented explores amino sugars (d-glucosamine HCl and d-gluconolactone) as potential hydrophilic carriers to improve dissolution rate of a poorly water-soluble drug, piroxicam, from physical mixtures and solid dispersion formulations. Solid dispersions of the drug and carrier were prepared using different ratios by the conventional solvent evaporation method. Acetone was used as solvent in the preparation of solid dispersions. Physical mixtures of piroxicam and carrier were also prepared for comparison. The properties of all solid dispersions and physical mixtures were studied using a dissolution tester, Fourier transform infrared, XRD, SEM and differential scanning calorimetry. These results showed that the presence of glucosamine or gluconolactone can increase dissolution rate of piroxicam compared to pure piroxicam. Glucosamine or Gluconolactone could be used as carrier in solid dispersion formulations and physical mixtures to enhance the dissolution rate. Solid state studies showed that no significant changes occurred for piroxicam in physical mixtures and solid dispersion
Investigations on the Physical Structure and the Mechanism of Drug Release from an Enteric Matrix Microspheres with a Near-Zero-Order Release Kinetics Using SEM and Quantitative FTIR
The objectives of this study were to evaluate the physical structure and the release mechanisms of theophylline microspheres made of Eudragit S 100 polymer as an enteric polymer, combined with a nonerodible polymer, Eudragit RL 100. In the preparation process, polymer combinations (1:1) were dissolved in an organic solvent mixture composed of acetone and methanol at a specific ratio containing a theoretical drug loading of approximately 15%. Two microsphere formulations (LS1 and LS2) were prepared at two different total polymer concentrations (10% in LS1 and 12.7% in LS2). Dissolution studies were carried out using US Pharmacopeia Dissolution Apparatus II in an acidic medium for 8 h and in an acidic medium (2 h) followed by a slightly basic-buffered medium for 10 h. Both LS1 and LS2 microsphere formulations produced particles that were spherical in shape and had very narrow size distributions with one size fraction comprising 70–80% of the yield. Scanning electron microscopy and quantitative Fourier transform infrared were used for microsphere physical structure evaluation. Except for the absence of drug crystals, photomicrographs of both LS microspheres after dissolution in pH 1.2 and 7.2 buffer solutions were similar to those before dissolution. Dissolution results indicated the ability of LS microspheres to minimize drug release during the acid stage. However, in the slightly basic medium that followed the acidic stage, the drug release was sustained and controlled in its kinetics and data fitted to Peppas equation indicated a case II transport suggesting that the drug release is mainly through swelling/erosion mechanism
Evaluation of matrix tablets based on Eudragit®E100/Carbopol®971P combinations for controlled release and improved compaction properties of water Soluble Model Drug Paracetamol
The purpose of this work was to investigate the influence of Eudragit®E100 polymer in modifying the release rates and compaction properties of water soluble model drug paracetamol from Carbopol®971P NF polymer matrix tablets prepared by direct compression. The effects of the ratio of the two polymers, the total polymeric content, and the tablets mechanical strength on paracetamol release rates were investigated. Dissolution studies were conducted using USP XX Πrotating paddle apparatus at 50 rpm and 37°C at three different stages (pH 1.2, 4.8, and 6.8). Results showed that the polymers combination improved significantly the compaction properties of paracetamol tablets as evident by the higher crushing strengths (8.3 ± 0.4 Kp) compared to polymer-free tablets (3.4 ± 0.2 Kp) at intermediate compression pressure of 490 MPa. When combined with Carbopol®971P NF, Eudragit®E100 was found to be capable of extending paracetamol release for more than 12 h compared to 1 h for polymers-free tablets. The combined polymers were able to control paracetamol release in a pH independent pattern. The f2 (similarity factor) analysis showed that the ratio between the polymers and the total polymer concentration exhibited significant impact on drug release rates. In conclusion, Eudragit®E100 when combined with Carbopol®971P NF was capable of improving the compaction and sustained release properties of paracetamol. Korsmeyer–Peppas model was found to be the most suitable for fitting drug release data. The polymer combinations can potentially be used to control the release rates of highly water soluble drugs