16 research outputs found

    The Holy Grail: A road map for unlocking the climate record stored within Mars' polar layered deposits

    Get PDF
    In its polar layered deposits (PLD), Mars possesses a record of its recent climate, analogous to terrestrial ice sheets containing climate records on Earth. Each PLD is greater than 2 ​km thick and contains thousands of layers, each containing information on the climatic and atmospheric state during its deposition, creating a climate archive. With detailed measurements of layer composition, it may be possible to extract age, accumulation rates, atmospheric conditions, and surface activity at the time of deposition, among other important parameters; gaining the information would allow us to “read” the climate record. Because Mars has fewer complicating factors than Earth (e.g. oceans, biology, and human-modified climate), the planet offers a unique opportunity to study the history of a terrestrial planet’s climate, which in turn can teach us about our own planet and the thousands of terrestrial exoplanets waiting to be discovered. During a two-part workshop, the Keck Institute for Space Studies (KISS) hosted 38 Mars scientists and engineers who focused on determining the measurements needed to extract the climate record contained in the PLD. The group converged on four fundamental questions that must be answered with the goal of interpreting the climate record and finding its history based on the climate drivers. The group then proposed numerous measurements in order to answer these questions and detailed a sequence of missions and architecture to complete the measurements. In all, several missions are required, including an orbiter that can characterize the present climate and volatile reservoirs; a static reconnaissance lander capable of characterizing near surface atmospheric processes, annual accumulation, surface properties, and layer formation mechanism in the upper 50 ​cm of the PLD; a network of SmallSat landers focused on meteorology for ground truth of the low-altitude orbiter data; and finally, a second landed platform to access ~500 ​m of layers to measure layer variability through time. This mission architecture, with two landers, would meet the science goals and is designed to save costs compared to a single very capable landed mission. The rationale for this plan is presented below. In this paper we discuss numerous aspects, including our motivation, background of polar science, the climate science that drives polar layer formation, modeling of the atmosphere and climate to create hypotheses for what the layers mean, and terrestrial analogs to climatological studies. Finally, we present a list of measurements and missions required to answer the four major questions and read the climate record. 1. What are present and past fluxes of volatiles, dust, and other materials into and out of the polar regions? 2. How do orbital forcing and exchange with other reservoirs affect those fluxes? 3. What chemical and physical processes form and modify layers? 4. What is the timespan, completeness, and temporal resolution of the climate history recorded in the PLD

    The Holy Grail: A road map for unlocking the climate record stored within Mars' polar layered deposits

    Get PDF
    In its polar layered deposits (PLD), Mars possesses a record of its recent climate, analogous to terrestrial ice sheets containing climate records on Earth. Each PLD is greater than 2 ​km thick and contains thousands of layers, each containing information on the climatic and atmospheric state during its deposition, creating a climate archive. With detailed measurements of layer composition, it may be possible to extract age, accumulation rates, atmospheric conditions, and surface activity at the time of deposition, among other important parameters; gaining the information would allow us to “read” the climate record. Because Mars has fewer complicating factors than Earth (e.g. oceans, biology, and human-modified climate), the planet offers a unique opportunity to study the history of a terrestrial planet’s climate, which in turn can teach us about our own planet and the thousands of terrestrial exoplanets waiting to be discovered. During a two-part workshop, the Keck Institute for Space Studies (KISS) hosted 38 Mars scientists and engineers who focused on determining the measurements needed to extract the climate record contained in the PLD. The group converged on four fundamental questions that must be answered with the goal of interpreting the climate record and finding its history based on the climate drivers. The group then proposed numerous measurements in order to answer these questions and detailed a sequence of missions and architecture to complete the measurements. In all, several missions are required, including an orbiter that can characterize the present climate and volatile reservoirs; a static reconnaissance lander capable of characterizing near surface atmospheric processes, annual accumulation, surface properties, and layer formation mechanism in the upper 50 ​cm of the PLD; a network of SmallSat landers focused on meteorology for ground truth of the low-altitude orbiter data; and finally, a second landed platform to access ~500 ​m of layers to measure layer variability through time. This mission architecture, with two landers, would meet the science goals and is designed to save costs compared to a single very capable landed mission. The rationale for this plan is presented below. In this paper we discuss numerous aspects, including our motivation, background of polar science, the climate science that drives polar layer formation, modeling of the atmosphere and climate to create hypotheses for what the layers mean, and terrestrial analogs to climatological studies. Finally, we present a list of measurements and missions required to answer the four major questions and read the climate record. 1. What are present and past fluxes of volatiles, dust, and other materials into and out of the polar regions? 2. How do orbital forcing and exchange with other reservoirs affect those fluxes? 3. What chemical and physical processes form and modify layers? 4. What is the timespan, completeness, and temporal resolution of the climate history recorded in the PLD

    Unlocking the Climate Record Stored within Mars’ Polar Layered Deposits

    Get PDF
    In the icy beds of its polar layered deposits (PLD), Mars likely possesses a record of its recent climate history, analogous to terrestrial ice sheets that contain records of Earth's past climate. Both northern and southern PLDs store information on the climatic and atmospheric state during the deposition of each layer (WPs: Becerra et al.; Smith et al). Reading the climate record stored in these layers requires detailed measurements of layer composition, thickness, isotope variability, and near-surface atmospheric measurements. We identify four fundamental questions that must be answered in order to interpret this climate record and decipher the recent climatic history of Mars: 1. Fluxes: What are the present and past fluxes of volatiles, dust, and other materials into and out of the polar regions? 2. Forcings: How do orbital/axial forcing and exchange with other reservoirs affect those fluxes? 3. Layer Processes: What chemical and physical processes form and modify layers? 4. Record: What is the timespan, completeness, and temporal resolution of the climate history recorded in the PLD? In a peer reviewed report (1), we detailed a sequence of missions, instruments, and architecture needed to answer these questions. Here, we present the science drivers and a mission concept for a polar lander that would enable a future reading of the past few million years of the Martian climate record. The mission addresses as-yet-unachieved science goals of the current Decadal Survey and of MEPAG for obtaining a record of Mars climate and has parallel goals to the NEXSAG and ICE-SAG reports

    Toward the integrated marine debris observing system

    Get PDF
    Plastics and other artificial materials pose new risks to the health of the ocean. Anthropogenic debris travels across large distances and is ubiquitous in the water and on shorelines, yet, observations of its sources, composition, pathways, and distributions in the ocean are very sparse and inaccurate. Total amounts of plastics and other man-made debris in the ocean and on the shore, temporal trends in these amounts under exponentially increasing production, as well as degradation processes, vertical fluxes, and time scales are largely unknown. Present ocean circulation models are not able to accurately simulate drift of debris because of its complex hydrodynamics. In this paper we discuss the structure of the future integrated marine debris observing system (IMDOS) that is required to provide long-term monitoring of the state of this anthropogenic pollution and support operational activities to mitigate impacts on the ecosystem and on the safety of maritime activity. The proposed observing system integrates remote sensing and in situ observations. Also, models are used to optimize the design of the system and, in turn, they will be gradually improved using the products of the system. Remote sensing technologies will provide spatially coherent coverage and consistent surveying time series at local to global scale. Optical sensors, including high-resolution imaging, multi- and hyperspectral, fluorescence, and Raman technologies, as well as SAR will be used to measure different types of debris. They will be implemented in a variety of platforms, from hand-held tools to ship-, buoy-, aircraft-, and satellite-based sensors. A network of in situ observations, including reports from volunteers, citizen scientists and ships of opportunity, will be developed to provide data for calibration/validation of remote sensors and to monitor the spread of plastic pollution and other marine debris. IMDOS will interact with other observing systems monitoring physical, chemical, and biological processes in the ocean and on shorelines as well as the state of the ecosystem, maritime activities and safety, drift of sea ice, etc. The synthesized data will support innovative multi-disciplinary research and serve a diverse community of users

    Imaging brine and air inclusions in sea ice using micro-X-ray computed tomography

    No full text

    Frost flower surface area and chemistry as a function of salinity and temperature

    Get PDF
    Frost flowers play a role in air-ice exchange in polar regions, contribute to tropospheric halogen chemistry, and affect ice core interpretation. Frost flowers were observed and collected on the Hudson Bay in March 2008. Their specific surface area (SSA) was measured using CH4 adsorption at 77 K. The Brunauer-Emmett-Teller analysis produced SSA values between 63 and 299 cm2 g−1 (mean 162 cm2 g−1, accuracy and reproducibility 5%). This range is very similar to that of DominĂ© et al. (2005) but our correlation of results with growth time and chemistry reveals the factors responsible for the wide range of SSA values. Longer growth time leads to higher SSA at low temperatures, so frost flowers are more likely to affect total surface area during colder periods. Chemical analysis was performed on frost flower melt and on local seawater and brine. We examined salinity and sulfate and bromide enrichment. The relationship between growth time and salinity varied spatially because of a freshwater plume from a nearby river and of tidal effects at the coast. Enrichment of certain ions in frost flowers, which affects their contribution to atmospheric chemistry, depends heavily on location, growth time, and temperature. No significant enrichment or depletion of bromide was detected. The low surface area index of frost flowers plus their lack of destruction in wind suggest their direct effect on sea salt mobilization and halogen chemistry may be less than previously thought, but their ability to salinate wind-blown snow may increase their indirect importance
    corecore