21 research outputs found

    Dynamic walking features and improved walking performance in multiple sclerosis patients treated with fampridine (4-aminopyridine)

    Get PDF
    Background: Impaired walking capacity is a frequent confinement in Multiple Sclerosis (MS). Patients are affected by limitations in coordination, walking speed and the distance they may cover. Also abnormal dynamic walking patterns have been reported, involving continuous deceleration over time. Fampridine (4-aminopyridine), a potassium channel blocker, may improve walking in MS. The objective of the current study was to comprehensively examine dynamic walking characteristics and improved walking capacity in MS patients treated with fampridine. Methods: A sample of N = 35 MS patients (EDSS median: 4) underwent an electronic walking examination prior to (Time 1), and during treatment with fampridine (Time 2). Patients walked back and forth a distance of 25 ft for a maximum period of 6 min (6-minute 25-foot-walk). Besides the total distance covered, average speed on the 25-foot distance and on turns was determined separately for each test minute, at Time 1 and Time 2. Results: Prior to fampridine administration, 27/35 patients (77 %) were able to complete the entire 6 min of walking, while following the administration, 34/35 patients (97 %) managed to walk for 6 min. In this context, walking distance considerably increased and treatment was associated with faster walking and turning across all six test minutes (range of effect sizes: partial eta squared = .34-.72). Importantly, previously reported deceleration across test minutes was consistently observable at Time 1 and Time 2. Discussion: Fampridine administration is associated with improved walking speed and endurance. Regardless of a treatment effect of fampridine, the previously identified, abnormal dynamic walking feature, i.e. the linear decline in walking speed, may represent a robust feature. Conclusions: The dynamic walking feature might hence be considered as a candidate for a new outcome measure in clinical studies involving interventions other than symptomatic treatment, such as immune-modulating medication. Trial registration: DRKS00009228 (German Clinical Trials Register). Date obtained: 25.08.2015

    Rad51 Inhibits Translocation Formation by Non-Conservative Homologous Recombination in Saccharomyces cerevisiae

    Get PDF
    Chromosomal translocations are a primary biological response to ionizing radiation (IR) exposure, and are likely to result from the inappropriate repair of the DNA double-strand breaks (DSBs) that are created. An abundance of repetitive sequences in eukaryotic genomes provides ample opportunity for such breaks to be repaired by homologous recombination (HR) between non-allelic repeats. Interestingly, in the budding yeast, Saccharomyces cerevisiae the central strand exchange protein, Rad51 that is required for DSB repair by gene conversion between unlinked repeats that conserves genomic structure also suppresses translocation formation by several HR mechanisms. In particular, Rad51 suppresses translocation formation by single-strand annealing (SSA), perhaps the most efficient mechanism for translocation formation by HR in both yeast and mammalian cells. Further, the enhanced translocation formation that emerges in the absence of Rad51 displays a distinct pattern of genetic control, suggesting that this occurs by a separate mechanism. Since hypomorphic mutations in RAD51 in mammalian cells also reduce DSB repair by conservative gene conversion and stimulate non-conservative repair by SSA, this mechanism may also operate in humans and, perhaps contribute to the genome instability that propels the development of cancer
    corecore