13 research outputs found

    Dynamics of the activated sludge in a newly-defined green bio-sorption reactor (GBR)

    Full text link
    © 2019 Elsevier B.V. When upgrading an aging wastewater treatment plant (WWTP), the sludge management line is always out of consideration in terms of cost and easy-operation. This study presented the dynamics of the sludge when upgrading a conventional sequencing batch reactor (SBR) to green bio-sorption reactor (GBR) by embedding alum sludge-based constructed wetland (AlCW). The aluminum (Al(III)) content in the effluent and the resultant impact on organisms were also evaluated. The results showed that the Al(III) residues was at an acceptable level (<0.2 mg/L). The AlCW and its leachate Al(III) did not pose any detrimental impact on the activity of heterotrophic organisms and the nitrifiers whereas the activity of the polyphosphate accumulating organisms was completely suppressed and eliminated out of the reactor. In addition, the Al(III) hydroxides and natural organic matter promoted the flocculation of activated sludge flocs by complexation with the extracellular polymeric substances. As a result, the larger and compact activated sludge led to an increase of the settling velocity and the dewatering efficiency while deteriorating the sludge compressibility (sludge volume index of 150 mL/g). Interestingly, this laboratory-scale GBR was verified to be a promising alternative to upgrade the ageing WWTPs simultaneously with an improvement of the dewatering properties of the activated sludge

    Anaerobic digestion process: technological aspects and recent developments

    No full text
    The technology of anaerobic digestion allows the use of biodegradable waste for energy production by breaking down organic matter through a series of biochemical reactions. Such process generates biogas (productivity of 0.45 Nm3/KgSV), which can be used as energy source in industrial activities or as fuel for automotive vehicles. Anaerobic digestion is an economically viable and environmentally friendly process since it makes possible obtaining clean energy at a low cost and without generating greenhouse gases. Searching for clean energy sources has been the target of scientists worldwide, and this technology has excelled on the basis of efficiency in organic matter conversion into biogas (yield in the range of 0.7–2.0 kWh/m3), considered energy carriers for the future. This paper gives an overview of the technology of anaerobic digestion of food waste, describing the metabolism and microorganisms involved in this process, as well as the operational factors that affect it such as temperature, pH, organic loading, moisture, C/N ratio, and co-digestion. The types of reactors that can be used, the methane production, and the most recent developments in this area are also presented and discussed
    corecore