4 research outputs found

    Leys from a Nordic perspective

    Get PDF
    The project involved creating a popular scientific review of the cultivation and use of leys for livestock. Target groups are the agricultural sector and industry. The project had four work packages (WP): crop production, harvest and conservation, feed value for different animals, and economy. Within each work package, search strings were developed and inclusion criteria defined, and a database for each WP developed through searching in online databases. Each selected article was assessed first on the title (include or exclude), second based on reading the abstract, and third based on reading the article. The review provides an extensive list of literature related to ley production and use, a description of the most important findings, and suggestions for future research

    Effects of supplementing a Bacillus-based direct-fed microbial on performance, nutrient digestibility, rumen fermentation characteristics, and metabolic responses of lactating dairy cows

    Get PDF
    This experiment was conducted to evaluate the effects of feeding a Bacillus-based direct-fed microbial (DFM) on performance, nutrient digestibility, rumen fermentation, and metabolic response of lactating dairy cows. Sixty-eight lactating (50 ± 6 d in milk) Holstein-Friesian (n = 20) and Swedish Red (n = 48) cows were enrolled to a 15-wk experiment. Cows were blocked by breed, lactation number, and days in milk and, within blocks, assigned to 1 of the 2 treatments: (1) basal partial mixed ration (PMR) without DFM (n = 34; CON) or (2) basal PMR with the addition of 3 g/head per day of a DFM containing Bacillus licheniformis and Bacillus subtilis (n = 34; DFM). The DFM was mixed in a protein pellet, whereas the CON group was fed the same pellet without DFM (1 kg/cow per day). The PMR contained 53% clover grass silage and 47% compound feed plus 3 kg of a concentrate (dry matter basis) offered during milking. Milk yield and production efficiency were recorded daily, whereas milk samples were collected for 24 h every second week of the study for milk composition. During the experimental period, fecal, rumen fluid, and blood samples were collected from each cow for apparent nutrient digestibility, rumen fermentation, and metabolic responses, respectively. All data were analyzed using the MIXED procedure of SAS. No treatment effects were observed on cows final body weight and daily dry matter intake. However, cows fed DFM had a greater milk yield, milk production efficiency, lactose and total solids yield, and also tended to have a greater energy-corrected milk production efficiency and milk protein yield. No significant differences were observed on nutrient digestibility and total volatile fatty acids, but molar proportion of acetate was greater for cows fed DFM. In contrast, molar proportion of propionate was greater and butyrate tended to be greater for CON. Cows fed DFM had greater mean plasma insulin-like growth factor-I (IGF-I), but no differences were observed for plasma glucose and insulin. In summary, supplementing a Bacillus-based DFM benefited productive responses of lactating dairy cows, while also modulating rumen fermentation and serum IGF-I

    A loss-of-function mutation in human Oxidation Resistance 1 disrupts the spatial–temporal regulation of histone arginine methylation in neurodevelopment

    No full text
    Abstract Background Oxidation Resistance 1 (OXR1) gene is a highly conserved gene of the TLDc domain-containing family. OXR1 is involved in fundamental biological and cellular processes, including DNA damage response, antioxidant pathways, cell cycle, neuronal protection, and arginine methylation. In 2019, five patients from three families carrying four biallelic loss-of-function variants in OXR1 were reported to be associated with cerebellar atrophy. However, the impact of OXR1 on cellular functions and molecular mechanisms in the human brain is largely unknown. Notably, no human disease models are available to explore the pathological impact of OXR1 deficiency. Results We report a novel loss-of-function mutation in the TLDc domain of the human OXR1 gene, resulting in early-onset epilepsy, developmental delay, cognitive disabilities, and cerebellar atrophy. Patient lymphoblasts show impaired cell survival, proliferation, and hypersensitivity to oxidative stress. These phenotypes are rescued by TLDc domain replacement. We generate patient-derived induced pluripotent stem cells (iPSCs) revealing impaired neural differentiation along with dysregulation of genes essential for neurodevelopment. We identify that OXR1 influences histone arginine methylation by activating protein arginine methyltransferases (PRMTs), suggesting OXR1-dependent mechanisms regulating gene expression during neurodevelopment. We model the function of OXR1 in early human brain development using patient-derived brain organoids revealing that OXR1 contributes to the spatial–temporal regulation of histone arginine methylation in specific brain regions. Conclusions This study provides new insights into pathological features and molecular underpinnings associated with OXR1 deficiency in patients
    corecore