4 research outputs found

    MTBP plays a crucial role in mitotic progression and chromosome segregation

    No full text
    Murine double minute 2 (MDM2) binding protein (MTBP) has been implicated in tumor cell proliferation, but the underlying mechanisms remain unclear. The results of MTBP expression analysis during cell cycle progression demonstrated that MTBP protein was rapidly degraded during mitosis. Immunofluorescence studies revealed that a portion of MTBP was localized at the kinetochores during prometaphase. MTBP overexpression delayed mitotic progression from nuclear envelope breakdown (NEB) to anaphase onset and induced abnormal chromosome segregation such as lagging chromosomes, chromosome bridges, and multipolar chromosome segregation. Conversely, MTBP downmodulation caused an abbreviated metaphase and insufficient mitotic arrest, resulting in abnormal chromosome segregation, aneuploidy, decreased cell proliferation, senescence, and cell death, similar to that of Mad2 (mitotic arrest-deficient 2) downmodulation. Furthermore, MTBP downmodulation inhibited the accumulation of Mad1 and Mad2, but not BubR1 (budding uninhibited by benzimidazoles related 1), on the kinetochores, whereas MTBP overexpression inhibited the release of Mad2 from the metaphase kinetochores. These results may imply that MTBP has an important role in recruiting and/or retaining the Mad1/Mad2 complex at the kinetochores during prometaphase, but its degradation is required for silencing the mitotic checkpoint. Together, this study indicates that MTBP has a crucial role in proper mitotic progression and faithful chromosome segregation, providing new insights into regulation of the mitotic checkpoint

    p53 isoforms Delta 133p53 and p53 beta are endogenous regulators of replicative cellular senescence

    No full text
    The finite proliferative potential of normal human cells leads to replicative cellular senescence, which is a critical barrier to tumour progression in vivo1–3. We show that human p53 isoforms (Δ133p53 and p53β)4 constitute an endogenous regulatory mechanism for p53-mediated replicative senescence. Induced p53β and diminished Δ133p53 were associated with replicative senescence, but not oncogene-induced senescence, in normal human fibroblasts. The replicatively senescent fibroblasts also expressed increased levels of miR-34a, a p53-induced microRNA5–9, the antisense inhibition of which delayed the onset of replicative senescence. The siRNA-mediated knockdown of endogenous Δ133p53 induced cellular senescence, which was attributed to the regulation of p21(WAF1) and other p53 transcriptional target genes. In overexpression experiments, while p53β cooperated with full-length p53 to accelerate cellular senescence, Δ133p53 repressed miR-34a expression and extended cellular replicative lifespan, providing a functional connection of this microRNA to the p53 isoform-mediated regulation of senescence. The senescence-associated signature of p53 isoform expression (i.e., elevated p53β and reduced Δ133p53) was observed in vivo in colon adenomas with senescent phenotypes10, 11. The increased Δ133p53 and decreased p53β isoform expression found in colon carcinoma may signal an escape from the senescence barrier during the progression from adenoma to carcinoma
    corecore